Control of Mobile Robots with Bounded Inputs in a Rigid Formation

Article Preview

Abstract:

This study presents controllers for trajectory tracking for the kinematic model of an Unmanned Ground Vehicle (UGV) subject to bounded inputs. The proposed controllers are based on smooth uniformly bounded functions that can easily be realized. Some results are demonstrated.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 260)

Pages:

38-44

Citation:

Online since:

July 2017

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] R.M. Murray and S. S. Sastry, Nonholonomic motion planning steering using sinusoids, Transactions on Automatic Control, 38 (1993) 700-716.

DOI: 10.1109/9.277235

Google Scholar

[2] J.P. Laumond, P.E. Jacobs, M. Taix. R.M. Murray, A motion planner for nonholonomic mobile robots, IEEE Transactions on Robotics and Automation, 10 (1994) 577-593.

DOI: 10.1109/70.326564

Google Scholar

[3] A.R. Teel, R. M. Murray, and G. Walsh, Nonhollonomic control systems: from steering to stabilization with sinusoids, International Journal of Control, 62 (1995) 849-870.

DOI: 10.1080/00207179508921572

Google Scholar

[4] A. Ailon, N. Berman, and S. Arogeti, On controllability and trajectory following of kinematic vehicle model, Automatica, 41 (2005) 889-896.

DOI: 10.1016/j.automatica.2004.11.025

Google Scholar

[5] Z. -P. Jiang, E. Lefeber, and H. Nijmeijer, Saturated stabilization and track control of a nonholonomic mobile robot, Syst. Contr. Lett., vol. 42, pp.327-332, (2001).

DOI: 10.1016/s0167-6911(00)00104-3

Google Scholar

[6] R. Fierro and F. L. Lewis, Control of a nonholonomic mobile robot: backstepping kinematics into dynamics, Journal of Robotic Systems, 14 (1997), 149–163.

DOI: 10.1002/(sici)1097-4563(199703)14:3<149::aid-rob1>3.0.co;2-r

Google Scholar

[7] M. Fliess, J. Levine, P. Martin, and P. Rouchon, Flatness and defect of non-linear systems: introductory theory and examples, International Journal of Control, 61 (1995) 1327-1361.

DOI: 10.1080/00207179508921959

Google Scholar