Identification of Parametric and Momentary Damages on the Basis of Lindeberg-Levy’s Model

Article Preview

Abstract:

Article presents the innovative method for the assessment of reliability condition of the exploited system, based on the appropriate analysis of changes in the current parameters of technical condition aRb and the regulation condition aRc, determined from the compressed condition equation (1 and 2). While analyzing the course of momentary parameters for technical condition aRb and the regulation condition aRc, it was observed that the parametric and momentary damages can be identified on the basis of quantitative relations between momentary threshold value dpr and corresponding momentary permissible value dpr dop, which are calculated from equation (7, 8, 9) resulting from Lindeberg-Levy’s theorem. It is assumed that the damages are prevailing, when for the moment θi: dpri>dpr dopi. With the number of damages (damage map), reliability parameters for each moment of exploitation of technical object (before the catastrophic damages will occur) can be determined. Parametric damages (expected lifetime E(T) and standard deviation of expected lifetime σE(T) provides the reasonable information for the appropriate planning of the servicing of exploitative objects.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 260)

Pages:

249-257

Citation:

Online since:

July 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Borowczyk H., Lindstedt P., Manerowski J., Permises for a practical computer – aided parametric method of evaluation of the technical object reliability, Journal of KONES, vol. 16 no 2, pp.29-38 Warsaw (2009).

DOI: 10.2478/v10040-008-0119-2

Google Scholar

[2] Cempel C., Teoria i inżynieria systemów, ITE – PIB, Radom (2006).

Google Scholar

[3] Grądzki R., The influence of diagnostic signal measurement period on blades technical condition imagines determined from phase shift difference, Solid State Phenomena Mechatronic Systems and Materials V 2013, vol. 199, p.67 – 72.

DOI: 10.4028/www.scientific.net/ssp.199.67

Google Scholar

[4] Grądzki R., Lindstedt P., Method of assessment of technical object amplitude in environment of exploatation and service conditions, Eksploatacja i Niezawodność – Maintenance and Reliability 2015, 17 (1), p.54 – 63.

DOI: 10.17531/ein.2015.1.8

Google Scholar

[5] Lindstedt P., The method of complex worthiness assessment of an engineering object in the process of its use and service, Solid State Phenomena, vol. 144/2009, p.45 – 52, Trans Tech Publications, Switzerland (2009).

DOI: 10.4028/www.scientific.net/ssp.144.45

Google Scholar

[6] Lindstedt P., Sudakowski T., Method of prediction of reliability characteristics of a pumping station on the base of diagnostic information, Journal of KONBiN 2(5) 2008, p.207 – 237, ITWL, Warszawa (2008).

DOI: 10.2478/v10040-008-0049-z

Google Scholar

[7] Lindstedt P., Sudakowski T, Grądzki R., Prediction of estimates of technical object's reliability on the basis of damage determined from Lindeberg – Levy's claim and multiplicity of the set specified from ergodicity stream damage, Journal of KONES, vol. 20, nr 1 (2013).

DOI: 10.5604/12314005.1135332

Google Scholar

[8] Mańczak K., Metoda identyfikacji wielowymiarowych obiektów sterowania, WNT, Warszawa (1971).

Google Scholar

[9] Sołodnikow W. W., Dynamika statystyczna liniowych układów sterowania automatycznego, WNT, Warszawa (1964).

Google Scholar

[10] Sotskow B. S., Niezawodność elementów i urządzeń automatyki, WNT, Warszawa (1973).

Google Scholar

[11] Sudakowski T., Permises of operational method of calculation of reliability of machines on the base of parametric and momentary symptoms of damage, Acta Mechanica et Automatica, vol. 3 no. 4, Bialystok (2009).

Google Scholar