In Situ Characterization and Molecular Mechanisms Evaluation of Interfacial Interaction between Minerals and Bioleaching Microorganisms

Article Preview

Abstract:

This article presents as follows the most recent progresses of our group on in-situ characterization and evaluation of the molecular mechanisms of interfacial interaction of minerals and bioleaching microorganisms. (1) By studying the speciation transformation of iron/copper/sulfur on the mineral surface, the evolution of cell surface properties and EPS composition, the evolution of microbial community structure, and the evolution of expression of key oxidase genes during bioleaching, to characterize the adaptation process and therein the effects of it on the specific sulfur oxidation efficiency of bioleaching; (2) by in-situ characterization of the evolution of chalcopyrite surface microstructure, chemical speciation and the biofilm formation, to illustrate the specific adsorption and the relationship between cell growth/biofilm formation and the structure and speciation on the defect mineral surface; (3) by studying the utilization, transformation and activation of S0, which is one of the major intermediates during bioleaching, and the distribution of extracellular thiol groups and iron speciation, to evaluate in situ the sulfur activation mechanism; and (4) by comparative proteomics study of the extracellular and outmembrane proteins and looking up the genome sequence, to screen sulfur activation/transportation relevant proteins and genes.

You might also be interested in these eBooks

Info:

* - Corresponding Author

[1] J.L. Xia, H.C. Liu, Z.Y. Nie, H.R. Zhu, Y. Yang, L. Wang, J.J. Song, C.H. Zhao, Y.L. Ma, Y.D. Zhao, C.Y. Ma, X.J. Zhen, Characterization of Microbe-Mineral Interface Interaction Based on Synchrotron Radiation Techniques, Adv. Mater. Res. 1130 (2015).

DOI: 10.4028/www.scientific.net/amr.1130.123

Google Scholar

[2] H.C. Liu, J.L. Xia, Z.Y. Nie, Relatedness of Cu and Fe speciation to chalcopyrite bioleaching by Acidithiobacillus ferrooxidans, Hydrometallurgy 156 (2015) 40-46.

DOI: 10.1016/j.hydromet.2015.05.013

Google Scholar

[3] H.C. Liu, J.L. Xia, Z.Y. Nie, W. Wen, Y. Yang, C.Y. Ma, L. Zheng, Y.D. Zhao, Formation and evolution of secondary minerals during bioleaching of chalcopyrite by thermoacidophilic Archaea Acidianus manzaensis, Trans. Nonferrous Met. Soc. China 26 (2016).

DOI: 10.1016/s1003-6326(16)64369-8

Google Scholar

[4] H.C. Liu, J.L. Xia, Z.Y. Nie, L.Z. Liu, L. Wang, C.Y. Ma, L. Zheng, Y.D. Zhao, W. Wen Comparative study of S, Fe and Cu speciation transformation during chalcopyrite bioleaching by mixed mesophiles and mixed thermophiles, Miner. Eng. 106 (2017).

DOI: 10.1016/j.mineng.2017.01.013

Google Scholar

[5] H.C. Liu, J.L. Xia, Z.Y. Nie, C.Y. Ma, L. Zheng, C.H. Hong, Y.D. Zhao, W. Wen, Bioleaching of chalcopyrite by Acidianus manzaensis under different constant pH, Miner. Eng. 98 (2016) 80-89.

DOI: 10.1016/j.mineng.2016.07.019

Google Scholar

[6] J.L. Xia, H.R. Zhu, L. Wang, H.C. Liu, Z.Y. Nie, Y.D. Zhao, C.Y. Ma, C.H. Hong, X.J. Zhen, In Situ Characterization of Relevance of Surface Microstructure and Electrochemical Properties of Chalcopyrite to Adsorption of Acidianus manzaensis, Adv. Mater. Res. 1130 (2015).

DOI: 10.4028/www.scientific.net/amr.1130.183

Google Scholar

[7] R.Y. Zhang, J. Liu, T.R. Neu, Q. Li, S. Bellenberg, W. Sand, M. Vera, Interspecies Interactions of Metal-Oxidizing Thermo-Acidophilic Archaea Acidianus and Sulfolobus, Adv. Mater. Res. 1130 (2015) 105-108.

DOI: 10.4028/www.scientific.net/amr.1130.105

Google Scholar

[8] M. Vera, A. Schippers, W. Sand, Progress in bioleaching: fundamentals and mechanisms of bacterial metal sulfide oxidation-part A, Appl. Microbiol. Biotechnol. 97 (2013) 7529-7541.

DOI: 10.1007/s00253-013-4954-2

Google Scholar

[9] W. Zhu, J.L. Xia, Y. Yang, Z.Y. Nie, A.A. Peng, H.C. Liu, G.Z. Qiu, Thermophilic archaeal community succession and function change associated with the leaching rate in bioleaching of chalcopyrite, Bioresour. Technol. 133 (2013) 405-413.

DOI: 10.1016/j.biortech.2013.01.135

Google Scholar

[10] W. Zhu, J.L. Xia, A.A. Peng, Z.Y. Nie, G.Z. Qiu, Characterization of apparent sulfur oxidation activity of thermophilic archaea in bioleaching of chalcopyrite, Trans. Nonferrous Met. Soc. China 23 (2013) 2383-2388.

DOI: 10.1016/s1003-6326(13)62745-4

Google Scholar

[11] H.C. Liu, J.L. Xia, Z.Y. Nie, L. Zheng, C.Y. Ma, Y.D. Zhao, Differential utilization and speciation transformation of orthorhombic α-S8 and amorphous μ-S by substrate-acclimated mesophilic Acidithiobacillus ferrooxidans, Trans. Nonferrous Met. Soc. China 25 (2016).

DOI: 10.1016/s1003-6326(15)63938-3

Google Scholar

[12] Z.Y. Nie, H.C. Liu, J.L. Xia, H.R. Zhu, C.Y. Ma, L. Zheng, Y.D. Zhao, G.Z. Qiu, Differential utilization and transformation of sulfur allotropes, μ-S and α-S8, by moderate thermoacidophile Sulfobacillus thermosulfidooxidans, Res. Microbiol. 165 (2014).

DOI: 10.1016/j.resmic.2014.09.001

Google Scholar

[13] H.C. Liu, J.L. Xia, Z.Y. Nie, A.A. Peng, C.Y. Ma, L. Zheng, Y.D. Zhao, Comparative study of sulfur utilization and speciation transformation of two elemental sulfur species by thermoacidophilic Archaea Acidianus manzaensis YN-25, Process Biochem. 48 (2013).

DOI: 10.1016/j.procbio.2013.09.005

Google Scholar

[14] H.C. Liu, J.L. Xia, Z.Y. Nie, X.J. Zhen, L.J. Zhang, Differential expression of extracellular thiol groups of moderately thermophilic Sulfobacillus thermosulfidooxidans and extremely thermophilic Acidianus manzaensis grown on S0 and Fe2+, Arch. Microbiol. 197 (2015).

DOI: 10.1007/s00203-015-1111-6

Google Scholar

[15] J.L. Xia, H.C. Liu, Z.Y. Nie, A.A. Peng, X.J. Zhen, Y. Yang, X.L. Zhang, Synchrotron radiation based STXM analysis and micro-XRF mapping of differential expression of extracellular thiol groups by Acidithiobacillus ferrooxidans grown on Fe2+ and S0, J. Microbiol. Meth. 94 (2013).

DOI: 10.1016/j.mimet.2013.06.030

Google Scholar

[16] A.A. Peng, J.L. Xia, H.C. Liu, W. Zhu, R.Y. Zhang, C.G. Zhang, Z.Y. Nie, Thiol-Rich Proteins Play Important Role in Adhesion and Sulfur Oxidation Process of Acidithiobacillus ferroxidans, Adv. Mater. Res. 825 (2013) 137-140.

DOI: 10.4028/www.scientific.net/amr.825.137

Google Scholar

[17] C.G. Zhang, R.Y. Zhang, J.L. Xia, Q. Zhang, Z.Y. Nie, Sulfur activation-related extracellular proteins of Acidithiobacillus ferrooxidans, Trans. Nonferrous Met. Soc. China 18 (2008) 1398-1402.

DOI: 10.1016/s1003-6326(09)60015-7

Google Scholar