Molecular Regulatory Network Involved in Biofilm Structure Development by Acidithiobacillus thiooxidans Includes Pel Exopolysaccharide Machinery

Article Preview

Abstract:

The Acidithiobacillus genus plays a relevant role in bioleaching. The molecular understanding of biofilm formation has been pointed out to design biological strategies to improve the efficiency of this industrial process and to prevent environmental damages caused by acid mine/rock drainages. In Acidithiobacillus spp., the molecular mechanisms involved in biofilm formation are currently emerging. The second messenger cyclic diguanylate (c-di-GMP) appears as a key player for biofilm formation by Acidithiobacillus sp. Here, results obtained from genomic analysis to characterize c-di-GMP pathway in At. thiooxidans are reported. Intracellular levels of c-di-GMP have been previously measured and data indicated that they are higher in adhered cells than planktonic ones. During the course of characterization of c-di-GMP effectors, a complete pel-like gene cluster has been identified in At. thiooxidans. By using total RNA obtained from planktonic and adhered sulfur-grown cells, transcriptomic analysis revealed that pelA belonging to the pel-like gene cluster is overexpressed in adhered cells. Moreover, genetic experiments were performed to compare wild type and null-mutant strains of At. thiooxidans for assessing the role of Pel exopolysaccharide. All together, the results obtained suggest a specific role for Pel machinery in the attachment to solid energy substrates by At. thiooxidans.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 262)

Pages:

330-333

Citation:

Online since:

August 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] W. Sand, T. Gehrke, P. Jozsa, A. Schippers, (Bio) chemistry of bacterial leaching - direct vs. indirect bioleaching, Hydrometallurgy 59 (2001) 159-175.

DOI: 10.1016/s0304-386x(00)00180-8

Google Scholar

[2] T. Gehrke, J. Telegdi, D. Thierry, W. Sand, Importance of extracellular polymeric substances from Thiobacillus ferrooxidans for bioleaching, Appl. Environ. Microbiol. 64 (1998) 2743-2747.

DOI: 10.1128/aem.64.7.2743-2747.1998

Google Scholar

[3] U. Römling, M.Y. Galperin, M. Gomelsky, Cyclic di-GMP: the First 25 Years of a Universal Bacterial Second Messenger, Microbiol. Mol. Biol. Rev. 77 (2013) 1-52.

DOI: 10.1128/mmbr.00043-12

Google Scholar

[4] R. Hengge, Trigger phosphodiesterases as a novel class of c-di-GMP effector proteins, Philos Trans R Soc Lond B Biol Sci. 371 (2016) pii: 20150498. doi: 10. 1098/rstb. 2015. 0498.

DOI: 10.1098/rstb.2015.0498

Google Scholar

[5] C.J. Jones, A. Utada, K.R. Davis, W. Thongsomboon, D. Zamorano Sanchez, V. Banakar, L. Cegelski, G.C. Wong, F. H Yildiz, C-di-GMP Regulates Motile to Sessile Transition by Modulating MshA Pili Biogenesis and Near-Surface Motility Behavior in Vibrio cholerae, PLoS Pathogens 11 (2015).

DOI: 10.1371/journal.ppat.1005068

Google Scholar

[6] L.M. Ruiz, M. Castro, A. Barriga, C.A. Jerez, N. Guiliani, The extremophile Acidithiobacillus ferrooxidans possesses a c-di-GMP signalling pathway that could play a significant role during bioleaching of minerals, Lett. Appl. Microbiol. 54 (2012).

DOI: 10.1111/j.1472-765x.2011.03180.x

Google Scholar

[7] M. Castro, L.M. Ruiz, A. Barriga, C.A. Jerez, D.S. Holmes, N. Guiliani, C-di-GMP Pathway in Biomining Bacteria, Advances Materials Research 71-73 (2009) 223-226.

DOI: 10.4028/www.scientific.net/amr.71-73.223

Google Scholar

[8] M. Castro, S.M. Deane, L. Ruiz, D.E. Rawlings, N. Guiliani, Diguanylate cyclase null mutant reveals that C-Di-GMP pathway regulates the motility and adherence of the extremophile bacterium Acidithiobacillus caldus, PloS One Vol. 10 (2015).

DOI: 10.1371/journal.pone.0116399

Google Scholar

[9] M. Diaz, S. Copaja, N. Guiliani, Functional analysis of c-di-GMP pathway in biomining bacterium Acidithiobacillus thiooxidans, Advanced Materials Research Vol. 825 (2013) 133-136.

DOI: 10.4028/www.scientific.net/amr.825.133

Google Scholar

[10] V.T. Lee, J.M. Matewish, J.L. Kessler, M. Hyodo, Y. Hayakawa, S. Lory, A cyclic-di-GMP receptor required for bacterial exopolysaccharide production, Mol. Microbiol. 67 (2007) 1474-1484.

DOI: 10.1111/j.1365-2958.2007.05879.x

Google Scholar

[11] L.K. Jennings, K.M. Storek, H.E. Ledvina, C. Coulon, L.S. Marmont, I. Sadovskaya, P.R. Secor, B.S. Tseng, M. Scian, A. Filloux, D.J. Wozniak, P.L. Howell, M.R. Parsek, Pel is a cationic exopolysaccharide that cross-links extracellular DNA in the Pseudomonas aeruginosa biofilm matrix, Proc. Natl. Acad. Sci. USA. 112 (2015).

DOI: 10.1073/pnas.1503058112

Google Scholar

[12] D. Amikam, M.Y. Galperin, PilZ domain is part of the bacterial c-di-GMP binding protein, Bioinformatics 22 (2006) 3-6.

DOI: 10.1093/bioinformatics/bti739

Google Scholar

[13] J.W. Hickman, C. S Harwood, Identification of FleQ from Pseudomonas aeruginosa as a c-di-GMP-responsive transcription factor, Mol. Microbiol. 69 (2008) 376-389.

DOI: 10.1111/j.1365-2958.2008.06281.x

Google Scholar

[14] L. Friedman, R. Kolter, Genes involved in matrix formation in Pseudomonas aeruginosa PA14 biofilms, Mol. Microbiol. 51 (2004) 675-690.

DOI: 10.1046/j.1365-2958.2003.03877.x

Google Scholar