[1]
H. Kojima, W. Tomohiro, M. Fukui, Sulfuricaulis limicola gen. nov., sp. nov., a sulfur oxidizer isolated from a lake, Int. J. Syst. Evol. Microbiol. 66 (2016) 266–270.
DOI: 10.1099/ijsem.0.000709
Google Scholar
[2]
H. Kojima, A. Shinohara, M. Fukui, Sulfurifustis variabilis gen. nov., sp. nov., a sulfur oxidizer isolated from a lake, and proposal of Acidiferrobacteraceae fam. nov. and Acidiferrobacterales ord. nov., Int. J. Syst. Evol. Microbiol. 65 (2015).
DOI: 10.1099/ijsem.0.000479
Google Scholar
[3]
K.B. Hallberg, S. Hedrich, D.B. Johnson, Acidiferrobacter thiooxydans, gen. nov. sp. nov.; an acidophilic, thermo-tolerant, facultatively anaerobic iron- and sulfur oxidizer of the family Ectothiorhodospiraceae, Extremophiles. 15 (2011) 271–279.
DOI: 10.1007/s00792-011-0359-2
Google Scholar
[4]
A.P. Jr Harrison, Genomic and physiological diversity amongst strains of Thiobacillus ferrooxidans, and genomic comparison with Thiobacillus thiooxidans, Arch. Microbiol. 131 (1982) 68–76.
DOI: 10.1007/bf00451501
Google Scholar
[5]
Z. He, X.H. Xie, Z.G. He, S.M. Xiao, J.S. Liu, Microbial diversity of mine water at Zhong Tiaoshan copper mine, China. J. Basic. Microbiol. 47 (2007) 485–495.
DOI: 10.1002/jobm.200700219
Google Scholar
[6]
D. Mitchell, K. Harneit, G. Meyer, W. Sand, E. Stackebrandt, Systematic analysis of our culture collection for 'genospecies', of Acidithiobacillus ferrooxidans, Acidithiobacillus thiooxidans and Leptospirillum ferrooxidans, in: V.S.T. Ciminelli, O. Garcia (Eds. ), Biohydrometallurgy: fundamentals, technology and sustainable development. Elsevier, Amsterdam, 2004, p.1369.
DOI: 10.1016/j.hydromet.2006.03.044
Google Scholar
[7]
R. Fujimura, Y. Sato, T. Nishizawa, K. Nanba, K. Oshima, M. Hattori, T. Kamijo, H. Ohta, Analysis of early bacterial communities on volcanic deposits on the island of Miyake (Miyake-jima), Japan: a 6-year study at a fixed site, Microbes Environ. 27 (2012).
DOI: 10.1264/jsme2.me11207
Google Scholar
[8]
A. Garcia-Moyano, E. Gonzalez-Toril, A. Aguilera, R. Amils, Prokaryotic community composition and ecology of floating macroscopic filaments from an extreme acidic environment, Rio Tinto (SW, Spain), Syst. Appl. Microbiol. 30 (2007) 601–614.
DOI: 10.1016/j.syapm.2007.08.002
Google Scholar
[9]
J.P. Huelsenbeck, F. Ronquist, MRBAYES: Bayesian inference of phylogenetic trees, Bioinformatics 17 (2001) 754–755.
DOI: 10.1093/bioinformatics/17.8.754
Google Scholar
[10]
J. Sukumaran, M.T. Holder, DendroPy: a Python library for phylogenetic computing, Bioinformatics 26 (2010) 1569–1571.
DOI: 10.1093/bioinformatics/btq228
Google Scholar
[11]
H. Nuñez, A. Moya-Beltrán, P.C. Covarrubias, F. Issotta, J.P. Cardenas, M. Gonzalez, J. Atavales, L.G. Acuña, D.B. Johnson, R. Quatrini, Molecular systematics of the genus Acidithiobacillus: insights into the phylogenetic structure and diversification of the taxon, Front. Microbiol. 8 (2017).
DOI: 10.3389/fmicb.2017.00030
Google Scholar
[12]
H. Nuñez, D. Loyola, J.P. Cárdenas, D.S. Holmes, D.B. Johnson, R. Quatrini, Multi Locus Sequence Typing scheme for Acidithiobacillus caldus strain evaluation and differentiation, Res. Microbiol. 165 (2014) 735–742.
DOI: 10.1016/j.resmic.2014.07.014
Google Scholar
[13]
E. Stackebrandt, J. Ebers, Taxonomic parameters revisited: tarnished gold standards, Microbiol. Today. 33 (2006)152–155.
Google Scholar
[14]
P. Vandamme, C. Peeters, Time to revisit polyphasic taxonomy, Antonie Van Leeuwenhoek 106 (2014) 57-65.
DOI: 10.1007/s10482-014-0148-x
Google Scholar