[1]
A. Hiraishi, J.F. Imhoff, Acidiphilium, in: W.B. Whitman (Ed. ), Bergey's Manual of Systematics of Archaea and Bacteria. Wiley Online Library, 2015, p.1–14.
DOI: 10.1002/9781118960608.gbm00877
Google Scholar
[2]
D.B. Johnson, Microbial communities and interactions in low pH environments, in: R. Quatrini, D.B. Johnson (Eds. ), Acidophiles: Life in extremely acidic environments, Caister Academic Press, UK, 2016, pp.121-137.
DOI: 10.21775/9781910190333.08
Google Scholar
[3]
R. Kermer, S. Hedrich, M. Taubert, S. Baumann, M. Schlomann, D.B. Johnson, M. von Bergen, J. Seifert, Elucidation of carbon transfer in a mixed culture of Acidiphilium cryptum and Acidithiobacillus ferrooxidans using protein-based stable isotope probing, J. Integr. OMICS 2 (2012).
DOI: 10.5584/jiomics.v2i1.85
Google Scholar
[4]
A.P. Harrison, Acidiphilium cryptum gen. nov., sp. nov., heterotrophic bacterium from acidic mineral environments, Int. J. Syst. Bacteriol. 31(1981) 327-332.
DOI: 10.1099/00207713-31-3-327
Google Scholar
[5]
R. Guay, M. Silver, Thiobacillus acidophilus sp. nov.: isolation and some physiological characteristics, Can. J. Microbiol. 21(1975) 281–288.
DOI: 10.1139/m75-040
Google Scholar
[6]
A.P. Harrison Jr., Genomic and physiological comparisons between heterotrophic thiobacilli and Acidiphilum cryptum, Thiobacillus versutus sp. nov., and Thiobacillus acidophilus nom. rev., Int. J. Syst. Bacteriol. 33 (1983) 211–217.
DOI: 10.1099/00207713-33-2-211
Google Scholar
[7]
A. Hiraishi, K.V.P. Nagashima, K. Matsuura, K. Shimada, S. Takaichi, N. Wakao. Y. Katayama, Phylogeny and photosynthetic features of Thiobacillus acidophilus and related acidophilic bacteria: its transfer to the genus Acidiphilium as Acidiphilium acidophilum comb. nov., Int. J. Syst. Bacteriol. 48 (1998).
DOI: 10.1099/00207713-48-4-1389
Google Scholar
[8]
J.H. Lobos, T.E. Chisolm, L.H. Bopp, D.S. Holmes, Acidiphilium organovorum sp. nov., an acidophilic heterotroph isolated from a Thiobacillus ferrooxidans culture, Int. J. Syst. Bacteriol. 36 (1986) 139-144.
DOI: 10.1099/00207713-36-2-139
Google Scholar
[9]
P.L. Wichlacz, R.F. Unz, T.A. Langworthy, Acidiphilium angustum sp. nov., Acidiphilium facilis sp. nov., and Acidiphilium rubrum sp. nov.: acidophilic heterotrophic bacteria isolated from acidic coal mine drainage, Int. J. Syst. Bacteriol. 36 (1986).
DOI: 10.1099/00207713-36-2-197
Google Scholar
[10]
S. Bhattacharyya, B.K. Chakrabarty, A. Das, P.N. Kundu, P.C. Banerjee, Acidiphilum symbioticum sp. nov., an acidophilic heterotrophic bacterium from Thiobacillus ferrooxidans cultures isolated from Indian mines, Can. J. Microbiol. 37 (1991).
DOI: 10.1139/m91-012
Google Scholar
[11]
N. Wakao, N. Nagasawa, T. Matsuura, H. Matsukura, T. Matsumoto, A. Hiraishi, Y. Sakurai, H. Shiota, Acidiphilium multivorum sp. nov., an acidophilic chemoorganotrophic bacterium from pyritic acid mine drainage, J. Gen. Appl. Microbiol. 40 (1994).
DOI: 10.2323/jgam.40.143
Google Scholar
[12]
K. Okamura, A. Kawai, N. Wakao, T. Yamada, A. Hiraishi, Acidiphilium iwatense sp. nov., isolated from an acid mine drainage treatment plant, and emendation of the genus Acidiphilium, Int. J. Syst. Evol. Microbiol. 65 (2015) 42-48.
DOI: 10.1099/ijs.0.065052-0
Google Scholar
[13]
N.R. Mahapatra, S. Ghosh, C. Deb, P.C. Banerjee, Resistance to cadmium and zinc in Acidiphilium symbioticum KM2 is plasmid mediated, Curr. Microbiol. 45 (2002), 180.
DOI: 10.1007/s00284-001-0113-6
Google Scholar
[14]
S. Itoh, M. Iwaki, N. Wakao, A. Aoki, K. Tazaki, Accumulation of Fe, Cr and Ni metals inside cells of acidophilic bacterium Acidiphilium rubrum that produced Zn containing bacteriochlorophyll a, Plant Cell Physiol. 39 (1998) 740.
DOI: 10.1093/oxfordjournals.pcp.a029428
Google Scholar
[15]
N.R. Mahapatra, P.C. Banerjee, Extreme tolerance to cadmium and high resistance to copper, nickel and zinc in different Acidiphilium strains, Lett. Appl. Microbiol. 23 (1996) 393.
DOI: 10.1111/j.1472-765x.1996.tb01344.x
Google Scholar
[16]
M. Latorre, M.P. Cortés, D. Travisany, A. Di Genova, M. Budinich, A. Reyes-Jara, C. Hödar, M. González, P. Parada, R.A. Bobadilla-Fazzini, V. Cambiazo, A. Maass. The bioleaching potential of a bacterial consortium, Biores Technol. 218 (2016).
DOI: 10.1016/j.biortech.2016.07.012
Google Scholar
[17]
F. Issotta, P.A. Galleguillos, A. Moya-Beltrán, C.S. Davis-Belmar, G. Rautenbach, P.C. Covarrubias, M. Acosta, F.J. Ossandon, Y. Contador , D.S. Holmes, S. Marín-Eliantonio, R. Quatrini, C. Demergasso, Draft genome sequence of chloride-tolerant Leptospirillum ferriphilum Sp-Cl from industrial bioleaching operations in northern Chile, Stand. Genomic. Sci. 11 (2016).
DOI: 10.1186/s40793-016-0142-1
Google Scholar
[18]
J. Goris, K.T. Konstantinidis, J.A. Klappenbach, T. Coenye, P. Vandamme, J.M. Tiedje, DNA-DNA hybridization values and their relationship to whole-genome sequence similarities, Int. J. Syst. Evol. Microbiol. 57 (2007) 81-91.
DOI: 10.1099/ijs.0.64483-0
Google Scholar
[19]
J.P. Meier-Kolthoff, A.F. Auch, H.P. Klenk, M. Göker, Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics. 14 (2013) 60.
DOI: 10.1186/1471-2105-14-60
Google Scholar
[20]
J.P. Meier-Kolthoff, R.L. Hahnke, J. Petersen, C. Scheuner, V. Michael, A. Fiebig, C. Rohde, M. Rohde, B. Fartmann, L.A. Goodwin, O. Chertkov, T.B.K. Reddy, A. Pati, N.N. Ivanova, V. Markowitz, N.C. Kyrpides, T. Woyke, M. Göker, H.P. Klenk,. Complete genome sequence of DSM 30083T, the type strain (U5/41T) of Escherichia coli, and a proposal for delineating subspecies in microbial taxonomy, Stand. Genomic. Sci. 9(2014).
DOI: 10.1186/1944-3277-9-2
Google Scholar
[21]
K. Katoh, D.M. Standley, MAFFT multiple sequence alignment software version 7: improvements in performance and usability, Mol. Biol. Evol. 30 (2013) 772–80.
DOI: 10.1093/molbev/mst010
Google Scholar
[22]
S. Kumar, G. Stecher, K. Tamura, MEGA7: Molecular Evolutionary Genetics Analysis Version 7. 0 for Bigger Datasets, Mol. Biol. Evol. 33 (2016) 1870–1874.
DOI: 10.1093/molbev/msw054
Google Scholar
[23]
J.P. Huelsenbeck, F. Ronquist, MRBAYES: Bayesian inference of phylogenetic trees, Bioinformatics 17 (2001) 754–755.
DOI: 10.1093/bioinformatics/17.8.754
Google Scholar
[24]
J. Sukumaran, M.T. Holder, DendroPy: a Python library for phylogenetic computing, Bioinformatics 26 (2010) 1569–1571.
DOI: 10.1093/bioinformatics/btq228
Google Scholar
[25]
K. Suzuki, N. Wakao, Y. Sakurai, T. Kimura, K. Sakka, K. Ohmiya, Transformation of Escherichia coli with a large plasmid of Acidiphilium multivorum AIU 301 encoding arsenic resistance, Appl. Environ. Microbiol. 63 (1997) 2089–(2091).
DOI: 10.1128/aem.63.5.2089-2091.1997
Google Scholar