Microorganisms Oxidize Iron (II) Ions in the Presence of High Concentrations of Sodium Chloride - Potentially Useful for Bioleaching

Article Preview

Abstract:

Acidophilic leaching microorganisms have been reported to be in general intolerant to high salinity, namely high concentrations of chloride. At present this restriction hampers the use of sea water for bioleaching technology. Enrichment cultures obtained in this study from a former ore deposit near the Spanish coast oxidize ferrous iron in the presence of up to 50 gL-1 NaCl at pH 2.5 and 37°C. The presence of at least 5 gL-1 NaCl was shown to be an obligate requirement for iron oxidation. The major microbial groups comprise Alicyclobacillus and Arthrobacter. The findings may be of biotechnological relevance.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 262)

Pages:

364-367

Citation:

Online since:

August 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. Vera, A. Schippers, W. Sand, Progress in bioleaching: fundamentals and mechanisms of bacterial metal sulfide oxidation—part A, Appl. Microbiol. Biotechnol. 97 (2013) 7529-7541.

DOI: 10.1007/s00253-013-4954-2

Google Scholar

[2] D.W. Shiers, D.W., K.R. Blight, D.E. Ralph, Sodium sulphate and sodium chloride effects on batch culture of iron oxidising bacteria, Hydrometallurgy 80 (2005) 75-82.

DOI: 10.1016/j.hydromet.2005.07.001

Google Scholar

[3] M. Dopson, D.S. Holmes, M. Lazcano, T.J. McCredden, C.G. Bryan, K.T. Mulroney, R. Steuart, C. Jackaman, and E.L.J. Watkin, Multiple osmotic stress responses in Acidihalobacter prosperus result in tolerance to chloride ions, Front. Microbiol. 7 (2017).

DOI: 10.3389/fmicb.2016.02132

Google Scholar

[4] C.S. Gahan, J.E. Sundkvist, M. Dopson, A. Sandstrom, Effect of chloride on ferrous iron oxidation by a Leptospirillum ferriphilum-dominated chemostat culture, Biotechnol. Bioeng. 106 (2010) 422-431.

DOI: 10.1002/bit.22709

Google Scholar

[5] H. Korehi, M. Blöthe, M.A. Sitnikova, B. Dold, A. Schippers, Metal mobilization by iron- and sulfur-oxidizing bacteria in a multiple extreme mine tailings in the Atacama Desert, Chile, Environ. Sci. Technol. 47 (2013) 2189-2196.

DOI: 10.1021/es304056n

Google Scholar

[6] C. Nicolle Jle, S. Simmons, S. Bathe, P.R. Norris, Ferrous iron oxidation and rusticyanin in halotolerant, acidophilic Thiobacillus prosperus, Microbiol. 155 (2009) 1302-1309.

DOI: 10.1099/mic.0.023192-0

Google Scholar

[7] C.M. Zammit, S. Mangold, V. Jonna, L.A. Mutch, H.R. Watling, M. Dopson, E.L. Watkin, Bioleaching in brackish waters-effect of chloride ions on the acidophile population and proteomes of model species, Appl. Microbiol. Biotechnol. 93 (2012).

DOI: 10.1007/s00253-011-3731-3

Google Scholar

[8] S. Hedrich, M. Schlomann, D.B. Johnson, The iron-oxidizing proteobacteria. Microbiol. 157 (2011) 1551-1564.

DOI: 10.1099/mic.0.045344-0

Google Scholar

[9] S.M. Rea, N.J. McSweeney, B.P. Degens, C. Morris, H.M. Siebert, .H. Kaksonen, Salt-tolerant microorganisms potentially useful for bioleaching operations where fresh water is scarce, Miner. Eng. 75 (2015) 126-132.

DOI: 10.1016/j.mineng.2014.09.011

Google Scholar

[10] M. Mackintosh, Nitrogen fixation by Thiobacillus ferroxidans, J. Gen. Microbiol. 105 (1978) 215-218.

Google Scholar

[11] G. Haferburg, J.A.D. Gröning, N. Schmidt, N. -A. Kummer, J.C. Erquicia, M. Schlömann, Microbial diversity of the hypersaline and lithium-rich Salar de Uyuni, Bolivia, Microbiol. Res. 199 (2017) 19-28.

DOI: 10.1016/j.micres.2017.02.007

Google Scholar

[12] S.J. Joe, K. Suto, C. Inoie, and T. Chida, Isolation and characterization of acidophilic heterotrophic iron-oxidizing bacterium from enrichment culture obtained from acid mine drainage treatment plant, J. Biosci. Bioeng. 104 (2007) 117-123.

DOI: 10.1263/jbb.104.117

Google Scholar

[13] A. Yahya, K.B. Hallberg, D.B. Johnson, Iron and carbon metabolism by a mineral-oxidizing Alicyclobacillus-like bacterium, Arch. Microbiol. 189 (2008) 305-312.

DOI: 10.1007/s00203-007-0319-5

Google Scholar