[1]
M. Vera, A. Schippers, W. Sand, Progress in bioleaching: fundamentals and mechanisms of bacterial metal sulfide oxidation—part A, Appl. Microbiol. Biotechnol. 97 (2013) 7529-7541.
DOI: 10.1007/s00253-013-4954-2
Google Scholar
[2]
D.W. Shiers, D.W., K.R. Blight, D.E. Ralph, Sodium sulphate and sodium chloride effects on batch culture of iron oxidising bacteria, Hydrometallurgy 80 (2005) 75-82.
DOI: 10.1016/j.hydromet.2005.07.001
Google Scholar
[3]
M. Dopson, D.S. Holmes, M. Lazcano, T.J. McCredden, C.G. Bryan, K.T. Mulroney, R. Steuart, C. Jackaman, and E.L.J. Watkin, Multiple osmotic stress responses in Acidihalobacter prosperus result in tolerance to chloride ions, Front. Microbiol. 7 (2017).
DOI: 10.3389/fmicb.2016.02132
Google Scholar
[4]
C.S. Gahan, J.E. Sundkvist, M. Dopson, A. Sandstrom, Effect of chloride on ferrous iron oxidation by a Leptospirillum ferriphilum-dominated chemostat culture, Biotechnol. Bioeng. 106 (2010) 422-431.
DOI: 10.1002/bit.22709
Google Scholar
[5]
H. Korehi, M. Blöthe, M.A. Sitnikova, B. Dold, A. Schippers, Metal mobilization by iron- and sulfur-oxidizing bacteria in a multiple extreme mine tailings in the Atacama Desert, Chile, Environ. Sci. Technol. 47 (2013) 2189-2196.
DOI: 10.1021/es304056n
Google Scholar
[6]
C. Nicolle Jle, S. Simmons, S. Bathe, P.R. Norris, Ferrous iron oxidation and rusticyanin in halotolerant, acidophilic Thiobacillus prosperus, Microbiol. 155 (2009) 1302-1309.
DOI: 10.1099/mic.0.023192-0
Google Scholar
[7]
C.M. Zammit, S. Mangold, V. Jonna, L.A. Mutch, H.R. Watling, M. Dopson, E.L. Watkin, Bioleaching in brackish waters-effect of chloride ions on the acidophile population and proteomes of model species, Appl. Microbiol. Biotechnol. 93 (2012).
DOI: 10.1007/s00253-011-3731-3
Google Scholar
[8]
S. Hedrich, M. Schlomann, D.B. Johnson, The iron-oxidizing proteobacteria. Microbiol. 157 (2011) 1551-1564.
DOI: 10.1099/mic.0.045344-0
Google Scholar
[9]
S.M. Rea, N.J. McSweeney, B.P. Degens, C. Morris, H.M. Siebert, .H. Kaksonen, Salt-tolerant microorganisms potentially useful for bioleaching operations where fresh water is scarce, Miner. Eng. 75 (2015) 126-132.
DOI: 10.1016/j.mineng.2014.09.011
Google Scholar
[10]
M. Mackintosh, Nitrogen fixation by Thiobacillus ferroxidans, J. Gen. Microbiol. 105 (1978) 215-218.
Google Scholar
[11]
G. Haferburg, J.A.D. Gröning, N. Schmidt, N. -A. Kummer, J.C. Erquicia, M. Schlömann, Microbial diversity of the hypersaline and lithium-rich Salar de Uyuni, Bolivia, Microbiol. Res. 199 (2017) 19-28.
DOI: 10.1016/j.micres.2017.02.007
Google Scholar
[12]
S.J. Joe, K. Suto, C. Inoie, and T. Chida, Isolation and characterization of acidophilic heterotrophic iron-oxidizing bacterium from enrichment culture obtained from acid mine drainage treatment plant, J. Biosci. Bioeng. 104 (2007) 117-123.
DOI: 10.1263/jbb.104.117
Google Scholar
[13]
A. Yahya, K.B. Hallberg, D.B. Johnson, Iron and carbon metabolism by a mineral-oxidizing Alicyclobacillus-like bacterium, Arch. Microbiol. 189 (2008) 305-312.
DOI: 10.1007/s00203-007-0319-5
Google Scholar