[1]
G.C. Jones, K.C. Corin, R.P. van Hille, S.T.L. Harrison, The generation of toxic reactive oxygen species (ROS) from mechanically activated sulphide concentrates and its effect on thermophilic bioleaching, Miner. Eng. 24 (2011) 1198-1208.
DOI: 10.1016/j.mineng.2011.05.016
Google Scholar
[2]
G.C. Jones, R.P. van Hille, S.T.L. Harrison, Reactive oxygen species generated in the presence of fine pyrite particles and its implication in thermophilic mineral bioleaching, Appl. Microbiol. Biotechnol. 97 (2013) 2735-2742.
DOI: 10.1007/s00253-012-4116-y
Google Scholar
[3]
C.A. Cohn, S. Mueller, E. Wimmer, N. Leifer, S. Greenbaum, D.R. Strongin, M.A.A. Schoonen, Pyrite-induced hydroxyl radical formation and its effect on nucleic acids, Geochem. Trans. 7 (2006) 3.
DOI: 10.1186/1467-4866-7-3
Google Scholar
[4]
M.J. Borda, A.R. Elsetinow, M.A. Schoonen, D.R. Strongin, Pyrite-induced hydrogen peroxide formation as a driving force in the evolution of photosynthetic organisms on an early earth, Astrobiology. 1 (2001) 283-288.
DOI: 10.1089/15311070152757474
Google Scholar
[5]
S. Bellenberg, R. Barthen, M. Boretska, R. Zhang, W. Sand, M. Vera, Manipulation of pyrite colonization and leaching by iron-oxidizing Acidithiobacillus species, Appl. Microbiol. Biotechnol. 99 (2015) 1435-1449.
DOI: 10.1007/s00253-014-6180-y
Google Scholar
[6]
J.P. Cárdenas, F. Moya, P. Covarrubias, A. Shmaryahu, G. Levicán, D.S. Holmes, R. Quatrini, Comparative genomics of the oxidative stress response in bioleaching microorganisms, Hydrometallurgy 127–128 (2012) 162-167.
DOI: 10.1016/j.hydromet.2012.07.014
Google Scholar
[7]
L. Dekker, F. Arsene-Ploetze, J.M. Santini, Comparative proteomics of Acidithiobacillus ferrooxidans grown in the presence and absence of uranium, Res. Microbiol. 167 (2016) 234-239.
DOI: 10.1016/j.resmic.2016.01.007
Google Scholar
[8]
M.E. Mackintosh, Nitrogen fixation by Thiobacillus ferrooxidans, Microbiol. 105 (1978) 215-218.
DOI: 10.1099/00221287-105-2-215
Google Scholar
[9]
A. Schippers, P. Jozsa, W. Sand, Sulfur chemistry in bacterial leaching of pyrite, Appl. Environ. Microbiol. 62 (1996) 3424-3431.
DOI: 10.1128/aem.62.9.3424-3431.1996
Google Scholar
[10]
A.N. Baga, G.R.A. Johnson, N.B. Nazhat, R.A. Saadalla-Nazhat, A simple spectrophotometric determination of hydrogen peroxide at low concentrations in aqueous solution, Anal. Chim. Acta 204 (1988) 349-353.
DOI: 10.1016/s0003-2670(00)86374-6
Google Scholar
[11]
M. Vera, B. Krok, S. Bellenberg, W. Sand, A. Poetsch, Shotgun proteomics study of early biofilm formation process of Acidithiobacillus ferrooxidans ATCC 23270 on pyrite. Proteomics 13 (2013) 1133-1144.
DOI: 10.1002/pmic.201200386
Google Scholar
[12]
A. Javadi Nooshabadi, K. Hanumantha Rao, Formation of hydrogen peroxide by sulphide minerals, Hydrometallurgy 141 (2014) 82-88.
DOI: 10.1016/j.hydromet.2013.10.011
Google Scholar
[13]
S. Bellenberg, D.H. Ngoc, L. Castro, M. Boretska, W. Sand, M. Vera, Reactive oxygen species influence biofilm formation of acidophilic mineral-oxidizing bacteria on pyrite, Adv. Mat. Res. 1130 (2015) 118-122.
DOI: 10.4028/www.scientific.net/amr.1130.118
Google Scholar
[14]
Y. Ma, C. Lin, Microbial oxidation of Fe2+ and pyrite exposed to flux of micromolar H2O2 in acidic media, Scientific Reports 3 (2013) (1979).
DOI: 10.1038/srep01979
Google Scholar
[15]
J.R. Stone, S. Yang, Hydrogen peroxide: a signaling messenger, Antioxid Redox Signal 8 (2006) 243-270.
Google Scholar
[16]
D.R. Crawford, K.J. Davies, Adaptive response and oxidative stress, Environmental Health Perspectives 102 (1994) 25-28.
DOI: 10.2307/3432208
Google Scholar