Fungal Mineralization Processes in Rio Tinto

Article Preview

Abstract:

Eukaryotic diversity in Río Tinto turns out to be unexpectedly high when compared to the prokaryotic one. Unlike the prokaryotic community, little is known about the role of the most abundant eukaryotes, mainly algae and fungi, in this ecosystem. Previous studies using acidophilic fungi isolated from the Tinto basin have shown their ability to specifically sequester toxic metals. We have also been able to demonstrate their direct implication in the geochemical cycles through biomineralization processes. Although the role that fungi may play in the Tinto basin is still poorly understood, is becoming clear that they participate very actively in the geological conformation of the environment, generating minerals of possible economical interest.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 262)

Pages:

354-357

Citation:

Online since:

August 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] G.M. Gadd, Metals, minerals and microbes: Geomicrobiology and bioremediation, Microbiology 156 (2010) 609-643.

DOI: 10.1099/mic.0.037143-0

Google Scholar

[2] R. Amils, D. Fernández-Remolar and the IPBSL team, Río Tinto: A geochemical and mineralogical terrestrial analogue of Mars, Life. 4 (2014) 511-534.

DOI: 10.3390/life4030511

Google Scholar

[3] H.A. Lowestam, Mineral formed by organisms. Science 211 (1981), 1126-1131.

Google Scholar

[4] R.B. Frankel, D.A. Bazylisnki, Biologically Induced Mineralization by Bacteria, Rev. Miner. Geochem. 54 (2003) 95-114.

Google Scholar

[5] D. Gómez-Ortiz, C.D. Fernández-Remolar, A. Granda, C. Quesada, T. Granda, O. Prieto-Ballesteros, A. Molina, R. Amils, Identification of the subsurface sulfide bodies responsible for acidity in Río Tinto source water, Spain, Earth Planet. Sci. Lett. 391 (2014).

DOI: 10.1016/j.epsl.2014.01.022

Google Scholar

[6] D.K. Nordstrom, G. Southam, Geomicrobiology of sulphide mineral oxidation, Rev. Miner. Geochem. 35 (1999) 361-390.

Google Scholar

[7] M. Oggerin, F. Tornos, N. Rodriguez, L. Pascual, R. Amils, Fungal Iron Biomineralization in Río Tinto, Minerals 6 (2016), 37. doi: 10. 3390/min6020037.

DOI: 10.3390/min6020037

Google Scholar

[8] J.D. Martín, Using XPowder—A Sofware Package for Powder X-Ray Diffraction Analysis, 2004; D.L. GR-1001/04, ISBN: 84-609-1497-6, p.105. Spain. Available online: http: / www. xpowder. com.

Google Scholar

[9] J. Cosmidis, K. Benzerara, G. Morin, V. Busigny, O. Lebeau, D. Jézéquel, V. Noël, G. Dublet, G. Othmane, Biomineralization of iron-phosphates in the water column of Lake Pavin (Massif Central, France), Geochim. Coschim. Acta. 126 (2014) 78-96.

DOI: 10.1016/j.gca.2013.10.037

Google Scholar

[10] K.O. Konhauser, Diversity of bacterial iron mineralization, Earth Sci. Rev. 43 (1998) 91-121.

Google Scholar

[11] M. Oggerin, F. Tornos, N. Rodríguez, C. del Moral, M. Sánchez-Román, R. Amils, Specific jarosite biomineralization by Purpureocillium lilacinum, an acidophilic fungi isolated from Río Tinto, Environ. Microbiol. 15 (2013) 2228-2237.

DOI: 10.1111/1462-2920.12094

Google Scholar