[1]
Brierley, C.L., Biological processing: Biological processing of sulfidic ores and concentrates – integrating innovations. In: Lakshmanan et al (Eds). Innovative process development in metallurgical industry: Concept to commission. Springer International Publishing Switzerland (2016).
DOI: 10.1007/978-3-319-21599-0_6
Google Scholar
[2]
Ghorbani, Y., Franzidis, J.P., Heap leaching technology-current state, innovations, and future directions: a review. Miner. Process. Extr. M. 37 (2016) 73-119.
Google Scholar
[3]
Marín, S.A., Acosta, M., et al., Is the growth of microorganisms limited by carbon availability during chalcopyrite bioleaching? Hydrometallurgy 168 (2017) 13-20.
DOI: 10.1016/j.hydromet.2016.10.003
Google Scholar
[4]
Petersen, J., Minnaar, S.H., et al., Carbon dioxide and oxygen consumption during the bioleaching of a copper ore in a large isothermal column. Hydrometallurgy 104 (2010) 356–362.
DOI: 10.1016/j.hydromet.2010.03.022
Google Scholar
[5]
Acevedo, F., Gentina, J. C., et al., CO2 supply in the biooxidation of an enargite-pyrite gold concentrate. Biotechnol. Lett. 20 (1998) 257–259.
Google Scholar
[6]
Acosta, M., Galleguillos, P., et al., Variation in microbial community from predominantly mesophilic to thermotolerant and moderately thermophilic species in an industrial copper heap bioleaching operation. Hydrometallurgy 150 (2014) 281–289.
DOI: 10.1016/j.hydromet.2014.09.010
Google Scholar
[7]
Remonsellez, F., Galleguillos, F., et al., Dynamic of active microorganisms inhabiting a bioleaching industrial heap of low-grade copper sulfide ore monitored by real-time PCR and oligonucleotide prokaryotic acidophile microarray. Microbial Biotechnology. 2 (2009).
DOI: 10.1111/j.1751-7915.2009.00112.x
Google Scholar
[8]
Valdés, J., Cárdenas, J.P., et al., Comparative genomics begins to unravel the ecophysiology of bioleaching. Hydrometallurgy 104 (2010) 471–476.
DOI: 10.1016/j.hydromet.2010.03.028
Google Scholar
[9]
Berg, I.A., Ecological aspects of the distribution of different autotrophic CO2 fixation pathways. Appl. Environ. Microbiol. 77 (2011), 1925–(1936).
DOI: 10.1128/aem.02473-10
Google Scholar
[10]
Kurosawa, H., Konno, Y., et al., Estimation of the CO2 fixation ability of Thiobacillus thiooxidans JCM 7814. J. Ferment. Bioeng. 75 (1993) 71-72.
DOI: 10.1016/0922-338x(93)90182-8
Google Scholar
[11]
Bryan, C.G., Davis-Belmar, C.S., et al., The effect of CO2 availability on the growth, iron oxidation and CO2 fixation rates of pure cultures of Leptospirillum ferriphilum and Acidithiobacillus ferrooxidans. Biotechnol. Bioeng. 109 (2012).
DOI: 10.1002/bit.24453
Google Scholar
[12]
Levicán, G., Ugalde, J.A., et al., Comparative genomic analysis of carbon and nitrogen assimilation mechanisms in three indigenous bioleaching bacteria: predictions and validations. BMC Genom. 9 (2008) 581.
DOI: 10.1186/1471-2164-9-581
Google Scholar
[13]
Galleguillos, P., Biodiversity and stress response of extremophilic prokaryotes isolated from the Escondida copper mine, Chile. A thesis submitted to Bangor University in candidature for the degree of philosophiae Doctor (2011).
Google Scholar
[14]
Pfaffl, M., Horgan, G., et al., Relative expression software tool (REST) for group-wise comparison and statistical analysis of relative expression results in real-time PCR. Nucleic Acids Res. 30 (2002) 9-36.
DOI: 10.1093/nar/30.9.e36
Google Scholar
[15]
Suzuki, I., Takeuchi, T. L, et al., Ferrous iron and sulfur oxidation and ferric iron reduction activities of Thiobacillus ferrooxidans are affected by growth on ferrous iron, sulfur, or a sulfide ore. Appl. Environ. Microb. 56 (1990) 1620 -1626.
DOI: 10.1128/aem.56.6.1620-1626.1990
Google Scholar
[16]
Esparza, M., Bowien, B., et al., Gene organization and CO2-responsive expression of four cbb operons in the bioleaching bacterium Acidithiobacillus ferrooxidans. Adv. Mat. Res. 71-73 (2009) 207-210.
DOI: 10.4028/www.scientific.net/amr.71-73.207
Google Scholar
[17]
Toyoda, K., Yoshizawa, Y., et al., The role of two CbbRs in the transcriptional regulation of three ribulose-1, 5-biphosphate carboxylase/oxygenase genes in Hydrogenovibrio marinus strain MH-110. Microbiology. 151 (2005) 3615-3625.
DOI: 10.1099/mic.0.28056-0
Google Scholar
[18]
Klein, M.G., Zwart, P., et al., Identification and structural analysis of a novel carboxysome shell protein with implications for metabolite transport. J. Mol. Biol. 392 (2009) 319–333.
DOI: 10.1016/j.jmb.2009.03.056
Google Scholar