Effect of Galactose on EPS Production and Attachment of Acidithiobacillus thiooxidans to Mineral Surfaces

Article Preview

Abstract:

The presence of extracellular polymeric substances (EPS) and their relevance for biofilm formation on the mineral surface for a variety of microbial species play a fundamental role in the degradation of sulfide ores. EPS production is associated with induction or auto induction mechanisms as a response of bacteria to environmental conditions. In this study, we tested galactose as an inducer of EPS production in planktonic cells of Acidithiobacillus thiooxidans DSM 14887T and their adherence to polymetallic mineral surfaces. Cells of At. thiooxidans were first adapted to grow at different concentrations of galactose (0.15, 0.25, 0.35%) using a modified 9K liquid medium and elemental sulfur as the energy source. In order to determine EPS production, the microorganisms were grown for 24 hours at different concentrations of galactose. Our results showed a cell adherence of 84% cells within 4 hours in presence of 0.15% galactose compared to 70% without galactose. The optimal concentration of galactose for maximal EPS production was 0.25% and for the attachment of cells it was 0.15%. Higher galactose concentrations inhibited microbial growth and decreased the number of cells attached to the mineral. While with a small amount of galactose in the culture media can shift the balance between sessile cells and planktonic cells, generating an increase in adhesion and therefore a possible increase of the bioleaching rate.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 262)

Pages:

476-481

Citation:

Online since:

August 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] C. Brierley. Mining biotechnology: research to commercial development and beyond. In: D. Rawlings and D. B. Johnson (eds. ) Biomining: theory, microbes and industrial process. Berlin: Springer-Verlag (1997). p.3–17.

DOI: 10.1007/978-3-662-06111-4_1

Google Scholar

[2] M. Vera, A. Schippers, W. Sand, Progress in bioleaching: fundamentals and mechanisms of bacterial metal sulfide oxidation, part A, Appl. Microbiol. Biotechnol. 97 (2013) 7529-7541.

DOI: 10.1007/s00253-013-4954-2

Google Scholar

[3] A. Schippers, W. Sand, Bacterial leaching of metal sulfides proceeds by two indirect mechanisms via thiosulfate or via polysulfides and sulfur, Appl. Environ. Microbiol. 65 (1999) 319–321.

DOI: 10.1128/aem.65.1.319-321.1999

Google Scholar

[4] T. Rohwerder, T. Gehrke, K. Kinzler, W. Sand, Bioleaching review part A: progress in bioleaching: fundamentals and mechanisms of bacterial metal sulfide oxidation, Appl. Microbiol. Biotechnol. 63 (2003) 239-248.

DOI: 10.1007/s00253-003-1448-7

Google Scholar

[5] J. Wingender, T. Neu, H. Flemming. What are bacterial extracellular polymeric substances?. In: J. Wingender, T. Neu, H. Flemming (eds. ) Microbial Extracellular Polymeric Substances. Springer, New York (1999) 1-19.

DOI: 10.1007/978-3-642-60147-7_1

Google Scholar

[6] A. Mass, P. Moreno, M. Budinich, P. Parada, L. Padilla, M. Barreto, Method to increase the production of extracellular polymeric substances (EPS) in a Acidithiobacillus ferrooxidans culture by the inhibition of enzymes of tricarboxilic acid cycle, USA. Patent 20110212527 A1 (2011).

Google Scholar

[7] R. Arredondo, A. Garcia, C.A. Jerez, Partial removal of lipopolysaccharide from Thiobacillus ferroxidans affects its adhesion to solids, Appl. Environ. Microbiol. 60 (1994) 2846-2851.

DOI: 10.1128/aem.60.8.2846-2851.1994

Google Scholar

[8] D. B. Johnson. The biogeochemistry of biomining. In: L. L Barton et al. (eds). Geomicrobiology: Molecular and Environmetal Perspective. Springer. (2010) pp.401-426.

DOI: 10.1007/978-90-481-9204-5_19

Google Scholar

[9] A. Saavedra, B. Pavez, M. Diaz, J.C. Gentina, Galactose as inducer of the production of extracellular polymeric substances by Acidithiobacillus ferrooxidans, Adv. Mater. Res. 825 (2013) 120-124.

DOI: 10.4028/www.scientific.net/amr.825.120

Google Scholar

[10] Y. Run-lan, O. Yang, T. Jian-xi, W. Fa-deng, S. Jing, M. Lei, Z. Dai-li. Effect of EPS on adhesion of Acidithiobacillus ferrooxidans on chalcopyrite and pyrite mineral surfaces, T. Nonferr. Metal Soc. 21 (2011) 407-412.

Google Scholar

[11] T. Kim, C. Kim, Y. Chang, H. Ryu, K. Cho, Development of an optimal medium for continuous ferrous iron oxidation by immobilized Acidithiobacillus ferrooxidans cells, Biotechnol. Prog. 18 (2002) 752-759.

DOI: 10.1021/bp020289j

Google Scholar

[12] J. Bernal. Analisis de aguas naturales continentales. In Institute of Hydrology of Spain, Mallorca, Consejo Insular, Madrid: (1980).

Google Scholar

[13] S. Bellenberg, R. Barthen, M. Boretska, R. Zhang, W. Sand, M. Vera, Manipulation of pyrite colonization and leaching by iron oxidizing Acidithiobacillus species, Appl. Microbiol. Biotechnol. 99 (2015) 1435-1449.

DOI: 10.1007/s00253-014-6180-y

Google Scholar

[14] L. Daniels, R. Hanson, J. Phillips. Chemical analysis. In: P. Gerhardt, R. Murray, W. Wood, N. Krieg (eds), Methods for general and molecular bacteriology, American Society of Microbiology, Washington D.C. (1994) 512–554.

Google Scholar

[15] M. Bradford. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye-binding, Anal. Biochem. 72 (1976) 248-254.

DOI: 10.1016/0003-2697(76)90527-3

Google Scholar

[16] S. Hedrich, A. G. Guézennec, M. Charron, A. Schippers, C. Joulian, Quantitative monitoring of microbial species during bioleaching of a copper concentrate, Front. Microbiol. 7 (2016) (2044).

DOI: 10.3389/fmicb.2016.02044

Google Scholar

[17] B. Pavez, A. Saavedra, M. Diaz, J.C. Gentina, Effect of exogenous galactose on EPS production during bioleaching of pyrite by Acidithiobacillus ferrooxidans, Adv. Mater. Res. 825 (2013) 125 – 128.

DOI: 10.4028/www.scientific.net/amr.825.125

Google Scholar

[18] J.M. Tapia, J.A. Muñoz, F. González, M. L Blázquez, A. Ballester, Mechanism of adsorption of ferric iron by extracellular polymeric substances (EPS) from a bacterium Acidiphilium sp., Water Sci. Technol. 8 (2011) 1716-1722.

DOI: 10.2166/wst.2011.649

Google Scholar

[19] Y. Rodríguez, A. Ballester, M.J. Blásquez, F. González, J. Muñoz, Study of bacterial attachment during the bioleaching of pyrite, chalcopyrite, and sphalerite, Geomicrobiol. J. 20 (2003) 131–141.

DOI: 10.1080/01490450303880

Google Scholar