Revisiting the Chrome Azurol S Assay for Various Metal Ions

Article Preview

Abstract:

Siderophores play an important role in the solubilisation and mobilization of iron (III) and various metal ions. To have a useful method to test siderophores in culture supernatants for their metal binding affinity, we redesigned and optimized the liquid CAS-assay for selected metal ions. CAS-assay solutions were calibrated with desferrioxamine B in different concentrations to calculate DFOB-equivalents to get a semi-quantitative evaluation. With these assay solutions, we were able to test siderophores in culture supernatants for their ability to chelate with Fe, Al, Ga, Cu, V and As.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 262)

Pages:

509-512

Citation:

Online since:

August 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A.J. Messenger, R. Barclay, Bacteria: Iron and Pathogenicy, Biochem. Educ. 11 (1983) 54–63.

Google Scholar

[2] E.D. Weinberg, Suppression of Bacterial Biofilm Formation by Iron Limitation, Med. Hypotheses. 63 (2004) 863–865.

DOI: 10.1016/j.mehy.2004.04.010

Google Scholar

[3] M. Miethke, M.A. Marahiel, Siderophore-Based Iron Acquisition and Pathogen Control, Microbiol. Mol. Biol. Rev. 71 (2007) 413–451.

DOI: 10.1128/mmbr.00012-07

Google Scholar

[4] J.B. Neilands, Microbial Iron Compounds, Ann. Rev. Biochem. (1981) 715–731.

Google Scholar

[5] E. Ahmed, S.J.M. Holmström, Siderophores in Environmental Research: Roles and Applications, Microb. Biotechnol. 7 (2014)196–208.

Google Scholar

[6] F.J. Langmyhr, K.S. Klausen, Complex Formation of Iron (III) with Chrome Azurol S, Anal. Chim. Acta. 29 (1963) 149–167.

DOI: 10.1016/s0003-2670(00)88596-7

Google Scholar

[7] B. Schwyn, J. B, Neilands, Universal Chemical Assay for the Detection and Determination of Siderophore, Anal. Biochem. 160 (1987) 47–56.

DOI: 10.1016/0003-2697(87)90612-9

Google Scholar

[8] M. Shenker, Y. Chen, Y. Hadar, Rapid Method for Accurate Determination of Colorless Siderophores and Synthetic Chelates, Soil Sci. Soc. Am. J. 59 (1995) 1612–1618.

DOI: 10.2136/sssaj1995.03615995005900060015x

Google Scholar

[9] D.J. Gascoyne, J.A. Connor, A.T. Bull, Isolation of Bacteria Producing Siderophores under Alkaline Conditions, Appl. Microbiol. Biotechnol. 36 (1991) 130–135.

DOI: 10.1007/bf00164713

Google Scholar

[10] C.O. Esuola, O.O. Babalola, T. Heine, R. Schwabe, M. Schlömann, D. Tischler, Identification and characterization of a FAD-dependent putrescine N-hydroxylase (GorA) from Gordonia rubripertincta CWB2, J. Mol. Catal. B-Enzym. 134 (2016) 378-389.

DOI: 10.1016/j.molcatb.2016.08.003

Google Scholar

[11] D.B. Alexander, D.A. Zuberer, Use of Chrome Azurol S Reagents to Evaluate Siderophore Production by Rhizosphere Bacteria, Biol. Fertil. Soils. 12 (1991) 39-45.

DOI: 10.1007/bf00369386

Google Scholar

[12] C.D. Cox, Deferration of Laboratory Media and Assays for Ferric and Ferrous Ions, Methods Enzymol. 235 (1994) 315–329.

DOI: 10.1016/0076-6879(94)35150-3

Google Scholar

[13] T.C. Johnstone, E.M. Nolan, Beyond iron: non-classical biological functions of bacterial siderophores, Dalton Trans. 44 (2015) 6320–6339.

DOI: 10.1039/c4dt03559c

Google Scholar