[1]
D.K. Nordstrom, D.W. Blowes, C.J. Ptacek, Hydrogeochemistry and microbiology of mine drainage: an update, Appl. Geochem. 57 (2015) 3–16.
DOI: 10.1016/j.apgeochem.2015.02.008
Google Scholar
[2]
I. Sanchez-Andrea, J.L. Sanz, M.F.M. Bijmans, A.J.M. Stams, Sulfate reduction at low pH to remediate acid mine drainage, J. Hazard. Mater. 269 (2014) 98-109.
DOI: 10.1016/j.jhazmat.2013.12.032
Google Scholar
[3]
O.F. Rowe, J. Sánchez-España, K.B. Hallberg, D.B. Johnson, Microbial communities and geochemical dynamics in an extremely acidic, metal-rich stream at an abandoned sulfide mine (Huelva, Spain) underpinned by two functional primary production systems, Environ. Microbiol. 9 (2007).
DOI: 10.1111/j.1462-2920.2007.01294.x
Google Scholar
[4]
I. Ňancucheo, D.B. Johnson, Safeguarding reactive mine tailings by ecological engineering: The significance of microbial communities and interactions, Appl. Environ. Microbiol. 77 (2011) 8201–8208.
DOI: 10.1128/aem.06155-11
Google Scholar
[5]
I. Ňancucheo, D.B. Johnson, Acidophilic algae isolated from mine-impacted environments and their roles in sustaining heterotrophic acidophiles, Frontiers Microbiol. 3 (2012) 1-8.
DOI: 10.3389/fmicb.2012.00325
Google Scholar
[6]
I. Ňancucheo, O.F. Rowe, S. Hedrich, D.B. Johnson, FEMS Microbiol. Lett. (2016) doi: 10. 1093/femsle/fnw083.
Google Scholar
[7]
A.L. Santos, D.B. Johnson, Combined recovery of copper and mitigation of pollution potential of a synthetic metal-rich stream draining a copper mine in Brazil, Adv. Mat. Res. 1130 (2015) 606–609.
DOI: 10.4028/www.scientific.net/amr.1130.606
Google Scholar
[8]
A.L. Santos, D.B. Johnson, The effects of temperature and pH on the kinetics of an acidophilic sulfidogenic bioreactor and indigenous microbial communities, Hydrometallurgy. 168 (2017) 116-120.
DOI: 10.1016/j.hydromet.2016.07.018
Google Scholar
[9]
I. Ňancucheo, D.B. Johnson, Selective removal of transition metals from acidic mine waters by novel consortia of acidophilic sulfidogenic bacteria, Microb. Biotechnol. 5 (2012) 34-44.
DOI: 10.1111/j.1751-7915.2011.00285.x
Google Scholar
[10]
M.A. Anwar, M. Iqbal, M.A. Qamar, M. Rehman, A.M. Khalid, Technical communication: Determination of cuprous ions in bacterial leachates and for environmental monitoring, World J. Microbiol. Biotechnol. 16 (2000) 135-138.
Google Scholar
[11]
G. Boshoff, J. Duncan, P.D. Rose, The use of micro-algal biomass as a carbon source for biological sulphate reducing systems, Water Res. 38 (2004) 2659-2666.
DOI: 10.1016/j.watres.2004.03.031
Google Scholar