[1]
B. Volesky, Z.R. Holan, Biosorption of heavy metals, Biotech. Prog. 11 (1995) 235-50.
DOI: 10.1021/bp00033a001
Google Scholar
[2]
T. A. Davis, , B. Volesky, A. Mucci, A review of the biochemistry of heavy metal biosorption by brown algae, Water Res. 37 (2003) 4311–4330.
DOI: 10.1016/s0043-1354(03)00293-8
Google Scholar
[3]
J. Raff, U. Soltmann, S. Matys, S. Selenska-Pobell, H. Böttcher, W. Pompe, Biosorption of Uranium and Copper by Biocers, Chem. Mater. 15 (2003) 240-244.
DOI: 10.1021/cm021213l
Google Scholar
[4]
E.A. DeSilva, E.S. Cossich, C.R.G. Tavares, L.C. Filho, R. Guirardello, Modeling of copper(II) biosorption by marine alga Sargassum sp. in fixed-bed column, Process. Biochem. 38 (2002) 791–799.
DOI: 10.1016/s0032-9592(02)00231-5
Google Scholar
[5]
M.A. Arap, Phage display technology - Applications and innovations, Gen. Mol. Biol. 28 (2005) 1-9.
Google Scholar
[6]
H.M.E. Azzazy, W. E. Highsmith Jr, Phage display technology: clinical applications and recent innovations, Cl. Biochem. 35 (2002) 425-445.
DOI: 10.1016/s0009-9120(02)00343-0
Google Scholar
[7]
J. Pande, M.M. Szewczyk, A.K. Grover, Phage display: Concept, innovations, applications and future, Biotech. Adv. 28(6) (2010) 849-858.
DOI: 10.1016/j.biotechadv.2010.07.004
Google Scholar
[8]
G. Smith, Filamentous fusion phage: Novel expression vectors that display cloned antigens on the virion surface, Science. 228 (1985) 1315 – 1316.
DOI: 10.1126/science.4001944
Google Scholar
[9]
J. Porath, Immobilized Metal Ion Affinity Chromatography, Protein Expr. Purif. 3 (1992) 263-81.
Google Scholar
[10]
W. Bashir, B. Paull, Ionic strength, pH and temperature effects upon selectivity for transition and heavy metal ions when using chelation ion chromatography with an iminodiacetic acid bonded silica gel column and simple inorganic eluents, J. Chrom. A. 942 (2002).
DOI: 10.1016/s0021-9673(01)01358-9
Google Scholar
[11]
D. Ren, N.A. Penner, B.E. Slentz, H.D. Inerowicz , M. Rybalko, F.E. Regnier, Contributions of commercial sorbents to the selectivity in immobilized metal affinity chromatography with Cu(II), J. Chrom. A. 1031 (2004) 87-92.
DOI: 10.1016/j.chroma.2003.10.041
Google Scholar
[12]
H. Block, B. Maertens, A. Spriestersbach, N. Brinker, J. Kubicek, R. Fabis, J. Labahn, F. Schäfer, Immobilized-Metal Affinity Chromatography (IMAC): A Review, Meth. Enzym. 463 (2009) 439–473.
DOI: 10.1016/s0076-6879(09)63027-5
Google Scholar
[13]
R.R. Naik, S.E. Jones, C.J. Murray, J. C, McAuliffe, R.A. Vaia, M.O. Stone, Peptide Templates for Nanoparticle Synthesis Derived from Polymerase Chain Reaction-Driven Phage Display, Adv. Funct. Mater. 14 (2004) 25–30.
DOI: 10.1002/adfm.200304501
Google Scholar
[14]
R. Niana, D. Sang Kimb, T. Nguyenc, L. Tand, C. -W. Kimb, I. -K. Yooc, W. -S. Choea, Chromatographic biopanning for the selection of peptides with high specificity to Pb2+ from phage displayed peptide library. J. Chrom. A. 1217 (2010) 5940-5949.
DOI: 10.1016/j.chroma.2010.07.048
Google Scholar