[1]
S.M. Wagner, R.O. Walton, Additive manufacturing's impact and future in the aviation industry, Prod. Plan. Control, 27 (2016) 1124-1130.
Google Scholar
[2]
E. Uhlmann, R. Kersting, T.B. Klein, M.F. Cruz, A.V. Borille, Additive Manufacturing of Titanium Alloy for Aircraft Components, Procedia CIRP, 35 (2015) 55-60.
DOI: 10.1016/j.procir.2015.08.061
Google Scholar
[3]
R. Wauthle, J. van der Stok, S. Amin Yavari, J. Van Humbeeck, J. -P. Kruth, A.A. Zadpoor, H. Weinans, M. Mulier, J. Schrooten, Additively manufactured porous tantalum implants, Acta Biomater, 14 (2015) 217-225.
DOI: 10.1016/j.actbio.2014.12.003
Google Scholar
[4]
W. Mroz, B. Budner, R. Syroka, K. Niedzielski, G. Golanski, A. Slosarczyk, D. Schwarze, T.E.L. Douglas, In vivo implantation of porous titanium alloy implants coated with magnesium-doped octacalcium phosphate and hydroxyapatite thin films using pulsed laser depostion, J. Biomed. Mater. Res. - Part B Appl. Biomater, 103 (2015).
DOI: 10.1002/jbm.b.33170
Google Scholar
[5]
H. Wang, B. Zhao, C. Liu, C. Wang, X. Tan, M. Hu, A comparison of biocompatibility of a titanium alloy fabricated by electron beam melting and selective laser melting, PLoS One, 11 (2016).
DOI: 10.1371/journal.pone.0158513
Google Scholar
[6]
D.D. Gu, W. Meiners, K. Wissenbach, R. Poprawe, Laser additive manufacturing of metallic components: materials, processes and mechanisms, Int. Mater. Rev., 57 (2012) 133-164.
DOI: 10.1179/1743280411y.0000000014
Google Scholar
[7]
A. Bandyopadhyay, F. Espana, V.K. Balla, S. Bose, Y. Ohgami, N.M. Davies, Influence of porosity on mechanical properties and in vivo response of Ti6Al4V implants, Acta Biomater., 6 (2010) 1640-1648.
DOI: 10.1016/j.actbio.2009.11.011
Google Scholar
[8]
L. Thijs, F. Verhaeghe, T. Craeghs, J. Van Humbeeck, J. -P. Kruth, A study of the micro structural evolution during selective laser melting of Ti-6Al-4V, Acta Mater. 58 (2010) 3303-3312.
DOI: 10.1016/j.actamat.2010.02.004
Google Scholar
[9]
L. Facchini, E. Magalini, P. Robotti, A. Molinari, S. Höges, K. Wissenbach, Ductility of a Ti-6Al-4V alloy produced by selective laser melting of prealloyed powders, Rapid Prototyp. J., 16 (2010) 450-459.
DOI: 10.1108/13552541011083371
Google Scholar
[10]
B. Song, S. Dong, H. Liao, C. Coddet, Process parameter selection for selective laser melting of Ti6Al4V based on temperature distribution simulation and experimental sintering, Int. J. Adv. Manuf. Technol., 61 (2011) 967-974.
DOI: 10.1007/s00170-011-3776-6
Google Scholar
[11]
J. Sun, Y. Yang, D. Wang, Mechanical properties of Ti-6Al-4V octahedral porous material unit formed by selective laser melting, Adv. Mech. Eng. 2012, (2012).
DOI: 10.1155/2012/427386
Google Scholar
[12]
B. Van Hooreweder, D. Moens, R. Boonen, J. -P. Kruth, P. Sas, Analysis of Fracture Toughness and Crack Propagation of Ti6Al4V Produced by Selective Laser Melting, Adv. Eng. Mater., 14 (2012) 92-97.
DOI: 10.1002/adem.201100233
Google Scholar
[13]
S. Leuders, M. Thöne, A. Riemer, T. Niendorf, T. Tröster, H.A. Richard, H.J. Maier, On the mechanical behaviour of titanium alloy TiAl6V4 manufactured by selective laser melting: Fatigue resistance and crack growth performance, Int. J. Fatigue, 48 (2013).
DOI: 10.1016/j.ijfatigue.2012.11.011
Google Scholar
[14]
H.X. Li, B.Y. Huang, F. Sun, S.L. Gong, Microstructure and Tensile Properties of Ti-6Al-4V Alloys Fabricated by Selective Laser Melting, Rare Met. Mater. Eng., 42 (2013) 209-212.
Google Scholar
[15]
J. Sun, Y. Yang, D. Wang, Parametric optimization of selective laser melting for forming Ti6Al4V samples by Taguchi method, Opt. Laser Technol., 49 (2013) 118-124.
DOI: 10.1016/j.optlastec.2012.12.002
Google Scholar
[16]
H. Gong, K. Rafi, H. Gu, T. Starr, B. Stucker, Analysis of defect generation in Ti-6Al-4V parts made using powder bed fusion additive manufacturing processes, Addit. Manuf., 1 (2014) 87-98.
DOI: 10.1016/j.addma.2014.08.002
Google Scholar
[17]
N.M. Dhansay, R. Tait, T. Becker, Fatigue and Fracture Toughness of Ti-6Al-4V Titanium Alloy Manufactured by Selective Laser Melting, Adv. Mater. Res., 1019 (2014) 248-253.
DOI: 10.4028/www.scientific.net/amr.1019.248
Google Scholar
[18]
F. Bartolomeu, S. Faria, O. Carvalho, E. Pinto, N. Alves, F.S. Silva, G. Miranda, Predictive models for physical and mechanical properties of Ti6Al4V produced by Selective Laser Melting, Mater. Sci. Eng. A., 663 (2016) 181-192.
DOI: 10.1016/j.msea.2016.03.113
Google Scholar
[19]
J. Yang, H. Yu, J. Yin, M. Gao, Z. Wang, X. Zeng, Formation and control of martensite in Ti-6Al-4V alloy produced by selective laser melting, Mater. Des., 108 (2016) 308-318.
DOI: 10.1016/j.matdes.2016.06.117
Google Scholar
[20]
Information on http: /www. 3dsystems. com/products/datafiles/sinterstation_pro _slm/SinterstationPro_DM125_DM250_SLMSystem. pdf.
Google Scholar
[21]
A.B. Spierings, M. Schneider, R. Eggenberger, Comparison of density measurement techniques for additive manufactured metallic parts, Rapid Prototyp. J., 17 (2011) 380-386.
DOI: 10.1108/13552541111156504
Google Scholar
[22]
D. Gu, Y. Shen, Balling phenomena during direct laser sintering of multi-component Cu-based metal powder, J. Alloys Compd., 432 (2007) 163-166.
DOI: 10.1016/j.jallcom.2006.06.011
Google Scholar
[23]
N.K. Tolochko, T. Laoui, Y. V Khlopkov, S.E. Mozzharov, V.I. Titov, M.B. Ignatiev, Absorptance of powder materials suitable for laser sintering, Rapid Prototyp. J., 6 (2000) 155-160.
DOI: 10.1108/13552540010337029
Google Scholar