Influence of Selective Laser Melting Process Parameters on Porosity of TiAl6V4 Alloy Fabricated by 200W CO2 Laser

Article Preview

Abstract:

In this research TiAl6V4 titanium base alloy was used for Selective Laser Melting (SLM). This alloy is widely used in aerospace and medical industries. To determine the influence of SLM process parameters on TiAl6V4 10x10x5 mm specimens were fabricated using different SLM process parameters. The porosity of fabricated specimens was determined by microscopy analysis of cross-sections and by the Archimedes method.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 265)

Pages:

470-474

Citation:

Online since:

September 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S.M. Wagner, R.O. Walton, Additive manufacturing's impact and future in the aviation industry, Prod. Plan. Control, 27 (2016) 1124-1130.

Google Scholar

[2] E. Uhlmann, R. Kersting, T.B. Klein, M.F. Cruz, A.V. Borille, Additive Manufacturing of Titanium Alloy for Aircraft Components, Procedia CIRP, 35 (2015) 55-60.

DOI: 10.1016/j.procir.2015.08.061

Google Scholar

[3] R. Wauthle, J. van der Stok, S. Amin Yavari, J. Van Humbeeck, J. -P. Kruth, A.A. Zadpoor, H. Weinans, M. Mulier, J. Schrooten, Additively manufactured porous tantalum implants, Acta Biomater, 14 (2015) 217-225.

DOI: 10.1016/j.actbio.2014.12.003

Google Scholar

[4] W. Mroz, B. Budner, R. Syroka, K. Niedzielski, G. Golanski, A. Slosarczyk, D. Schwarze, T.E.L. Douglas, In vivo implantation of porous titanium alloy implants coated with magnesium-doped octacalcium phosphate and hydroxyapatite thin films using pulsed laser depostion, J. Biomed. Mater. Res. - Part B Appl. Biomater, 103 (2015).

DOI: 10.1002/jbm.b.33170

Google Scholar

[5] H. Wang, B. Zhao, C. Liu, C. Wang, X. Tan, M. Hu, A comparison of biocompatibility of a titanium alloy fabricated by electron beam melting and selective laser melting, PLoS One, 11 (2016).

DOI: 10.1371/journal.pone.0158513

Google Scholar

[6] D.D. Gu, W. Meiners, K. Wissenbach, R. Poprawe, Laser additive manufacturing of metallic components: materials, processes and mechanisms, Int. Mater. Rev., 57 (2012) 133-164.

DOI: 10.1179/1743280411y.0000000014

Google Scholar

[7] A. Bandyopadhyay, F. Espana, V.K. Balla, S. Bose, Y. Ohgami, N.M. Davies, Influence of porosity on mechanical properties and in vivo response of Ti6Al4V implants, Acta Biomater., 6 (2010) 1640-1648.

DOI: 10.1016/j.actbio.2009.11.011

Google Scholar

[8] L. Thijs, F. Verhaeghe, T. Craeghs, J. Van Humbeeck, J. -P. Kruth, A study of the micro structural evolution during selective laser melting of Ti-6Al-4V, Acta Mater. 58 (2010) 3303-3312.

DOI: 10.1016/j.actamat.2010.02.004

Google Scholar

[9] L. Facchini, E. Magalini, P. Robotti, A. Molinari, S. Höges, K. Wissenbach, Ductility of a Ti-6Al-4V alloy produced by selective laser melting of prealloyed powders, Rapid Prototyp. J., 16 (2010) 450-459.

DOI: 10.1108/13552541011083371

Google Scholar

[10] B. Song, S. Dong, H. Liao, C. Coddet, Process parameter selection for selective laser melting of Ti6Al4V based on temperature distribution simulation and experimental sintering, Int. J. Adv. Manuf. Technol., 61 (2011) 967-974.

DOI: 10.1007/s00170-011-3776-6

Google Scholar

[11] J. Sun, Y. Yang, D. Wang, Mechanical properties of Ti-6Al-4V octahedral porous material unit formed by selective laser melting, Adv. Mech. Eng. 2012, (2012).

DOI: 10.1155/2012/427386

Google Scholar

[12] B. Van Hooreweder, D. Moens, R. Boonen, J. -P. Kruth, P. Sas, Analysis of Fracture Toughness and Crack Propagation of Ti6Al4V Produced by Selective Laser Melting, Adv. Eng. Mater., 14 (2012) 92-97.

DOI: 10.1002/adem.201100233

Google Scholar

[13] S. Leuders, M. Thöne, A. Riemer, T. Niendorf, T. Tröster, H.A. Richard, H.J. Maier, On the mechanical behaviour of titanium alloy TiAl6V4 manufactured by selective laser melting: Fatigue resistance and crack growth performance, Int. J. Fatigue, 48 (2013).

DOI: 10.1016/j.ijfatigue.2012.11.011

Google Scholar

[14] H.X. Li, B.Y. Huang, F. Sun, S.L. Gong, Microstructure and Tensile Properties of Ti-6Al-4V Alloys Fabricated by Selective Laser Melting, Rare Met. Mater. Eng., 42 (2013) 209-212.

Google Scholar

[15] J. Sun, Y. Yang, D. Wang, Parametric optimization of selective laser melting for forming Ti6Al4V samples by Taguchi method, Opt. Laser Technol., 49 (2013) 118-124.

DOI: 10.1016/j.optlastec.2012.12.002

Google Scholar

[16] H. Gong, K. Rafi, H. Gu, T. Starr, B. Stucker, Analysis of defect generation in Ti-6Al-4V parts made using powder bed fusion additive manufacturing processes, Addit. Manuf., 1 (2014) 87-98.

DOI: 10.1016/j.addma.2014.08.002

Google Scholar

[17] N.M. Dhansay, R. Tait, T. Becker, Fatigue and Fracture Toughness of Ti-6Al-4V Titanium Alloy Manufactured by Selective Laser Melting, Adv. Mater. Res., 1019 (2014) 248-253.

DOI: 10.4028/www.scientific.net/amr.1019.248

Google Scholar

[18] F. Bartolomeu, S. Faria, O. Carvalho, E. Pinto, N. Alves, F.S. Silva, G. Miranda, Predictive models for physical and mechanical properties of Ti6Al4V produced by Selective Laser Melting, Mater. Sci. Eng. A., 663 (2016) 181-192.

DOI: 10.1016/j.msea.2016.03.113

Google Scholar

[19] J. Yang, H. Yu, J. Yin, M. Gao, Z. Wang, X. Zeng, Formation and control of martensite in Ti-6Al-4V alloy produced by selective laser melting, Mater. Des., 108 (2016) 308-318.

DOI: 10.1016/j.matdes.2016.06.117

Google Scholar

[20] Information on http: /www. 3dsystems. com/products/datafiles/sinterstation_pro _slm/SinterstationPro_DM125_DM250_SLMSystem. pdf.

Google Scholar

[21] A.B. Spierings, M. Schneider, R. Eggenberger, Comparison of density measurement techniques for additive manufactured metallic parts, Rapid Prototyp. J., 17 (2011) 380-386.

DOI: 10.1108/13552541111156504

Google Scholar

[22] D. Gu, Y. Shen, Balling phenomena during direct laser sintering of multi-component Cu-based metal powder, J. Alloys Compd., 432 (2007) 163-166.

DOI: 10.1016/j.jallcom.2006.06.011

Google Scholar

[23] N.K. Tolochko, T. Laoui, Y. V Khlopkov, S.E. Mozzharov, V.I. Titov, M.B. Ignatiev, Absorptance of powder materials suitable for laser sintering, Rapid Prototyp. J., 6 (2000) 155-160.

DOI: 10.1108/13552540010337029

Google Scholar