Synthesis of EP648-TiC Metal Matrix Composite Powder for Selective Laser Melting by Ball Milling

Article Preview

Abstract:

The development of additive manufacturing (SLS/SLM, EBM, DMD) suggests the increase of the range expansion of materials used. One of the most promising directions is products manufacturing from composite materials. The technology of composite micro-powders production on the basis of heat-resistant nickel alloy EP648 and TiC is proposed. The aim of this research is to develop a method of producing composite micropowders for additive technology application. This method is based on modification of the metal micropowders surface by the second phase in a planetary mixer (mechanochemical synthesis).The obtained composite micropowders are compared with powders which are recommended for selective laser melting usage (produced by MTT Technology). The equipment used in the research: planetary mixer, scanning electron microscopy (SEM), optical granulomorphometer Occio 500nano.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 265)

Pages:

481-485

Citation:

Online since:

September 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S. Dadbakhsh, L. Hao, P.G.E. Jerrard, D.Z. Zhang, Experimental investigation on selective laser melting behaviour and processing windows of in situ reacted Al/Fe2O3 powder mixture, Powder Technol, 231 (2012) 112-121.

DOI: 10.1016/j.powtec.2012.07.061

Google Scholar

[2] A. Davydova, A. Domashenkov, A. Sova, I. Movtchan, P. Bertrand, B. Desplanques, N. Peillon, S. Saunier, C. Desrayaud, S. Bucher, C. Iacob, Selective laser melting of boron carbide particles coated by a cobalt-based metal layer, J. Mater. Process. Technol., 229 (2016).

DOI: 10.1016/j.jmatprotec.2015.09.033

Google Scholar

[3] C.S. Ramesh, C.K. Srinivas, B.H. Channabasappa, Abrasive wear behaviour of laser sintered iron–SiC composites, Wear., 267 (2009) 1777-1783.

DOI: 10.1016/j.wear.2008.12.026

Google Scholar

[4] P.A. Lykov, R.M. Baitimerov, S.B. Sapozhnikov, S.D. Vaulin, E. V Safonov, D.A. Zherebtcov, R.R. Abdrakhimov, Technology of production of composite powders Ti6Al4V-Al2O3 for additive methods, in: Proceedings of ECCM17 - 17th European Conference on Composite Materials, Munich, (2016).

Google Scholar

[5] T. Kuhnle, K. Partes, In-Situ Formation of Titanium Boride and Titanium Carbide by Selective Laser Melting, Phys. Procedia, 39 (2012) 432-438.

DOI: 10.1016/j.phpro.2012.10.058

Google Scholar

[6] D. Gu, Y.C. Hagedorn, W. Meiners, K. Wissenbach, R. Poprawe, Nanocrystalline TiC reinforced Ti matrix bulk-form nanocomposites by Selective Laser Melting (SLM), Densification, growth mechanism and wear behavior, Compos. Sci. Technol, 71 (2011).

DOI: 10.1016/j.compscitech.2011.07.010

Google Scholar

[7] P. Krakhmalev, I. Yadroitsev, Microstructure and properties of intermetallic composite coatings fabricated by selective laser melting of Ti–SiC powder mixtures, Intermetallics, 46 (2014) 147-155.

DOI: 10.1016/j.intermet.2013.11.012

Google Scholar

[8] P.A. Lykov, R.M. Baitimerov, S.B. Sapozhnikov, Zherebtcov, R.R. Abdrakhimov, A.M. Akhmedianov, The Manufacturing Of Cu-Al2O3 Composite Products, Research Publishing, Singapore, (2016) 494-499.

Google Scholar

[9] D. Dai, D. Gu, Tailoring surface quality through mass and momentum transfer modeling using a volume of fluid method in selective laser melting of TiC/AlSi10Mg powder, Int. J. Mach. Tools Manuf, 88 (2015) 95-107.

DOI: 10.1016/j.ijmachtools.2014.09.010

Google Scholar

[10] H. Attar, L. Löber, A. Funk, M. Calin, L.C. Zhang, K.G. Prashanth, Materials Science & Engineering A Mechanical behavior of porous commercially pure Ti and Ti – TiB composite materials manufactured by selective laser melting, Mater. Sci. Eng. A., 625 (2015).

DOI: 10.1016/j.msea.2014.12.036

Google Scholar

[11] T. Rong, D. Gu, Formation of novel graded interface and its function on mechanical properties of WC1-x reinforced Inconel 718 composites processed by selective laser melting, J. Alloys Compd., 680 (2016) 333-342.

DOI: 10.1016/j.jallcom.2016.04.107

Google Scholar

[12] C. Hong, D. Gu, D. Dai, A. Gasser, A. Weisheit, I. Kelbassa, M. Zhong, R. Poprawe, Laser metal deposition of TiC/Inconel 718 composites with tailored interfacial microstructures, Opt. Laser Technol., 54 (2013) 98-109.

DOI: 10.1016/j.optlastec.2013.05.011

Google Scholar

[13] Q. Jia, D. Gu, Selective laser melting additive manufacturing of TiC/Inconel 718 bulk-form nanocomposites: Densification, microstructure, and performance, J. Mater. Res., 29 (2014) 1960-(1969).

DOI: 10.1557/jmr.2014.130

Google Scholar

[14] C. Hong, D. Gu, D. Dai, M. Alkhayat, W. Urban, P. Yuan, S. Cao, A. Gasser, A. Weisheit, I. Kelbassa, M. Zhong, R. Poprawe, Laser additive manufacturing of ultrafine TiC particle reinforced Inconel 625 based composite parts, Tailored microstructures and enhanced performance, Mater. Sci. Eng. A., 635 (2015).

DOI: 10.1016/j.msea.2015.03.043

Google Scholar

[15] C. Hong, D. Gu, D. Dai, S. Cao, M. Alkhayat, Q. Jia, A. Gasser, A. Weisheit, I. Kelbassa, M. Zhong, R. Poprawe, High-temperature oxidation performance and its mechanism of TiC/Inconel 625 composites prepared by laser metal deposition additive manufacturing, J. Laser Appl., 27 (2015).

DOI: 10.2351/1.4898647

Google Scholar

[16] P.A. Lykov, S.B. Sapozhnikov, R.M. Baitimerov, The manufacturing of the AlSi12-Al2O3 composite powder for additive production methods, Mater. Sci. Forum., 870 (2016) 314-317.

DOI: 10.4028/www.scientific.net/msf.870.314

Google Scholar

[17] D. Gu, Y. Shen, Direct laser sintered WC-10Co/Cu nanocomposites, Appl. Surf. Sci., 254 (2008) 3971-3978.

DOI: 10.1016/j.apsusc.2007.12.028

Google Scholar