Influence of Al-Cu-Mn-Fe-Ti Alloy Composition and Production Parameters of Extruded Semi-Finished Products on their Structure and Mechanical Properties

Article Preview

Abstract:

Studies have been conducted as to the effect of Cu, Mn, Fe concentration changes in Al-Cu-Mn-Fe-Ti alloy, the conditions of thermal and deformational treatment of ingots and extruded rods 40 mm in diameter on the microstructure, phase composition and mechanical properties. It has been determined that changing Al-6.3Cu-0.3Mn-0.17Fe-0.15Ti alloy to Al-6.5Cu-0.7Mn-0.11Fe-0.15Ti causes an increase in the strength characteristics of extruded rods at the room temperature both after molding and in tempered and aged conditions, irrespective of the conditions of thermal treatment of the initial ingot (low-temperature annealing 420 °С for 2 h, or high-temperature annealing at 530 °С for 12 h). Increasing the extruding temperature from 330 to 480 °С, along with increasing Cu, Mn and decreasing Fe in the alloy Al-Cu-Mn-Ti, is accompanied by the increased level of ultimate strength in a quenched condition by 25% to 410 MPa, irrespective of the annealing conditions of the original ingot. An opportunity to apply the Al-6.3Cu-0.3Mn-0.17Fe-0.15Ti alloy with low-temperature annealing at 420 °С for 2 h and the molding temperature of 330 °С has been found to produce rods where, in the condition of full thermal treatment (tempering at 535 °С + aging at 200 °С for 8 hours), a structure is formed that ensures satisfactory characteristics of high temperature strength by resisting to fracture for more than 100 hours at 300 °С and 70 MPa.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 265)

Pages:

456-462

Citation:

Online since:

September 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] I.J. Polmear, Light Metals: From Traditional Alloys to Nanocrystals, 4th ed., Elsevier, Amsterdam, (2006).

Google Scholar

[2] G.E. Totten, D.S. MacKenzie, Handbook of Aluminum, Volume 2, Alloy Production and Materials Manufacturing, CRC Press, Boca Raton, (2003).

Google Scholar

[3] N.I. Kolobnev, Heat resistance of wrought aluminum alloys, Aviation materials and technologies, 40 (2016) 32-36.

DOI: 10.18577/2071-9140-2016-0-1-32-36

Google Scholar

[4] J.E. Hatch, Aluminum, Properties and Physical Metallurgy, ASM Int., Ohio, (1984).

Google Scholar

[5] V.S. Zolotorevskii, N.A. Belov, Metal Science of Casting Aluminum Alloys, MISiS, Moscow, (2005).

Google Scholar

[6] L.F. Mondolfo, Aluminum Alloys: Structure and Properties, Butterworths, London, UK, (1976).

Google Scholar

[7] V.I. Elagin, Alloying of Wrought Alloys by Transition Metals, Metallurgia Publisher, Moscow, (1975).

Google Scholar

[8] S.K. Son, M. Takeda, M. Mitome, Y. Bando, T. Endo, Precipitation behavior of an Al-Cu alloy during isothermal aging at low temperatures, Materials Letters, 59 (2005) 629-632.

DOI: 10.1016/j.matlet.2004.10.058

Google Scholar

[9] S. Terzi, L. Salvo, M. Suery, A. Dahle, E. Boller, In situ microtomography investigation of microstructural evolution in Al – Cu alloys during holding in semi-solid state, Transactions of Nonferrous Metals Society of China, 20 (2010) 734-738.

DOI: 10.1016/s1003-6326(10)60572-9

Google Scholar

[10] Y. Du, Y.A. Chang, B. Huang, W. Gong, Z. Jin, H. Xu, Z. Yuan, Y. Liu, Y. He, F. -Y. Xie, Diffusion coefficients of some solutes in fcc and liquid Al: Critical evaluation and correlation, Materials Science and Engineering A, 363 (2003) 140-151.

DOI: 10.1016/s0921-5093(03)00624-5

Google Scholar

[11] N.A. Belov, A.N. Alabin, Microstructure and mechanical properties of Al – Cu – Mn cold rolled sheet alloys, Aluminium Alloys: Their Physical and Mechanical Properties, 11th International Conference of Aluminium Alloys, Aachen, (2008) 1653-1659.

DOI: 10.3403/30131276

Google Scholar

[12] H.A. Elhadari, H.A. Patel, D.L. Chen, W. Kasprzak, Tensile and fatigue properties of a cast aluminum alloy with Ti, Zr and V additions, Mat. Sci. Eng., A 528 (2011) 8128-8138.

DOI: 10.1016/j.msea.2011.07.018

Google Scholar

[13] M. Vlach, I. Stulikova, B. Smola, Effect of cold rolling on precipitation processes in Al–Mn–Sc–Zr alloy, Mat. Sci. Eng., A 548 (2012) 27-32.

DOI: 10.1016/j.msea.2012.03.063

Google Scholar

[14] M. Easton, D. StJohn, Grain refinement of aluminum alloys: Part I. The nucleant and solute paradigms – a review of the literature, Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 30A (1999) 1613-1623.

DOI: 10.1007/s11661-999-0098-5

Google Scholar

[15] M.V. Grigor'yev, V.V. Antipov, R.O. Vakhromov, The structure and properties of the alloy ingots system Al-Cu-Mg microaddings with silver., Aviation materials and technologies, 3 (2013) 3-6.

Google Scholar

[16] M.E. Drits, Yu.G. Bykov, L.S. Toropova, Effect of ScAl3 phase dispersity on hardening of Al-6. 3% Mg-0. 21% Sc alloy, Metal Science and Heat Treatment, 27 (1985) 309-312.

DOI: 10.1007/bf00652102

Google Scholar

[17] N.A. Belov, A.N. Alabin, D.G. Eskin, V.V. Istomin-Kastrovskiy, Optimization of Hardening of Al–Zr–Sc Casting Alloys, J. Mater. Sci., 41 (2006) 5890-5899.

DOI: 10.1007/s10853-006-0265-7

Google Scholar

[18] M. Jaradeh, T. Carlberg, Solidification Studies of 3003 Aluminium Alloys with Cu and Zr Additions, J. Mater. Sci. Technol., 27 (2011) 615-627.

DOI: 10.1016/s1005-0302(11)60116-3

Google Scholar

[19] N.A. Belov, D.G. Eskin, A.A. Aksenov, Multicomponent Phase Diagrams: Applications for Commercial Aluminum Alloys, Elsevier, Amsterdam, (2005).

Google Scholar

[20] Z.N. Archakova, G.A. Balakhontsev, I.G. Basova, Structure and properties of semi-finished products from aluminum alloys. 2nd edition, Metallurgia Publisher, Moscow, (1984).

Google Scholar

[21] D. Tsivoulas, P.B. Prangnell, The effect of Mn and Zr dispersoid-forming additions on recrystallization resistance in Al–Cu–Li AA2198 sheet, Acta Materialia, 77 (2014) 1-16.

DOI: 10.1016/j.actamat.2014.05.028

Google Scholar

[22] M.L. Lobanov, A.A. Redikul'tsev, G. M Rusakov, Interrelation Between the Orientations of Deformation and Recrystallization in Hot Rolling of Anisotropic Electrical Steel, Met Sci Heat Treat., 57 (2015) 492-497.

DOI: 10.1007/s11041-015-9910-6

Google Scholar

[23] G.M. Rusakov, A.G. Illarionov, Yu.N. Loginov, M.L. Lobanov, A.A. Redikul'tsev, Interrelation of Crystallographic Orientations of Grains in Aluminum Alloy AMg6 Under Hot Deformation and Recrystallization, Metal Science and Heat Treatment, 56 (2015).

DOI: 10.1007/s11041-015-9816-3

Google Scholar

[24] Yu.N. Loginov, S.P. Burkin, V.V. Sapunzhi, The effect of aluminum alloy structure on variation of transversal dimensions of strip after stretcher straightening, Tsvetnye Metally, (7) 2002 71-73.

Google Scholar

[25] C.J. Tseng, S.L. Lee, T.F. Wu, J.C. Lin, Effects of manganese on microstructure and mechanical properties of A206 alloys containing iron, J. Mater. Res., 17 (2002) 2243–2250.

DOI: 10.1557/jmr.2002.0330

Google Scholar

[26] Z.N. Archakova, L.A. Kirillova, V.S. Sandler, Heat-resistant wrought aluminum alloys and prospects of their development, Metal Science and Heat Treatment, 25 (1983) 479-484.

DOI: 10.1007/bf00741933

Google Scholar

[27] Z. Chen, P. Chen, C. Ma, Microstructures and mechanical properties of Al-Cu-Mn alloy with La and Sm addition, Rare Metals, 31 (2012) 332-335.

DOI: 10.1007/s12598-012-0515-6

Google Scholar

[28] O.A. Romanova, N.N. Averkina, G.K. Nikisheva, Effect of silicon on the structure and properties of heat resistant aluminum alloy D21, Metal Science and Heat Treatment, 24 (1982) 198-200.

DOI: 10.1007/bf01166853

Google Scholar