[1]
I.J. Polmear, Light Metals: From Traditional Alloys to Nanocrystals, 4th ed., Elsevier, Amsterdam, (2006).
Google Scholar
[2]
G.E. Totten, D.S. MacKenzie, Handbook of Aluminum, Volume 2, Alloy Production and Materials Manufacturing, CRC Press, Boca Raton, (2003).
Google Scholar
[3]
N.I. Kolobnev, Heat resistance of wrought aluminum alloys, Aviation materials and technologies, 40 (2016) 32-36.
DOI: 10.18577/2071-9140-2016-0-1-32-36
Google Scholar
[4]
J.E. Hatch, Aluminum, Properties and Physical Metallurgy, ASM Int., Ohio, (1984).
Google Scholar
[5]
V.S. Zolotorevskii, N.A. Belov, Metal Science of Casting Aluminum Alloys, MISiS, Moscow, (2005).
Google Scholar
[6]
L.F. Mondolfo, Aluminum Alloys: Structure and Properties, Butterworths, London, UK, (1976).
Google Scholar
[7]
V.I. Elagin, Alloying of Wrought Alloys by Transition Metals, Metallurgia Publisher, Moscow, (1975).
Google Scholar
[8]
S.K. Son, M. Takeda, M. Mitome, Y. Bando, T. Endo, Precipitation behavior of an Al-Cu alloy during isothermal aging at low temperatures, Materials Letters, 59 (2005) 629-632.
DOI: 10.1016/j.matlet.2004.10.058
Google Scholar
[9]
S. Terzi, L. Salvo, M. Suery, A. Dahle, E. Boller, In situ microtomography investigation of microstructural evolution in Al – Cu alloys during holding in semi-solid state, Transactions of Nonferrous Metals Society of China, 20 (2010) 734-738.
DOI: 10.1016/s1003-6326(10)60572-9
Google Scholar
[10]
Y. Du, Y.A. Chang, B. Huang, W. Gong, Z. Jin, H. Xu, Z. Yuan, Y. Liu, Y. He, F. -Y. Xie, Diffusion coefficients of some solutes in fcc and liquid Al: Critical evaluation and correlation, Materials Science and Engineering A, 363 (2003) 140-151.
DOI: 10.1016/s0921-5093(03)00624-5
Google Scholar
[11]
N.A. Belov, A.N. Alabin, Microstructure and mechanical properties of Al – Cu – Mn cold rolled sheet alloys, Aluminium Alloys: Their Physical and Mechanical Properties, 11th International Conference of Aluminium Alloys, Aachen, (2008) 1653-1659.
DOI: 10.3403/30131276
Google Scholar
[12]
H.A. Elhadari, H.A. Patel, D.L. Chen, W. Kasprzak, Tensile and fatigue properties of a cast aluminum alloy with Ti, Zr and V additions, Mat. Sci. Eng., A 528 (2011) 8128-8138.
DOI: 10.1016/j.msea.2011.07.018
Google Scholar
[13]
M. Vlach, I. Stulikova, B. Smola, Effect of cold rolling on precipitation processes in Al–Mn–Sc–Zr alloy, Mat. Sci. Eng., A 548 (2012) 27-32.
DOI: 10.1016/j.msea.2012.03.063
Google Scholar
[14]
M. Easton, D. StJohn, Grain refinement of aluminum alloys: Part I. The nucleant and solute paradigms – a review of the literature, Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 30A (1999) 1613-1623.
DOI: 10.1007/s11661-999-0098-5
Google Scholar
[15]
M.V. Grigor'yev, V.V. Antipov, R.O. Vakhromov, The structure and properties of the alloy ingots system Al-Cu-Mg microaddings with silver., Aviation materials and technologies, 3 (2013) 3-6.
Google Scholar
[16]
M.E. Drits, Yu.G. Bykov, L.S. Toropova, Effect of ScAl3 phase dispersity on hardening of Al-6. 3% Mg-0. 21% Sc alloy, Metal Science and Heat Treatment, 27 (1985) 309-312.
DOI: 10.1007/bf00652102
Google Scholar
[17]
N.A. Belov, A.N. Alabin, D.G. Eskin, V.V. Istomin-Kastrovskiy, Optimization of Hardening of Al–Zr–Sc Casting Alloys, J. Mater. Sci., 41 (2006) 5890-5899.
DOI: 10.1007/s10853-006-0265-7
Google Scholar
[18]
M. Jaradeh, T. Carlberg, Solidification Studies of 3003 Aluminium Alloys with Cu and Zr Additions, J. Mater. Sci. Technol., 27 (2011) 615-627.
DOI: 10.1016/s1005-0302(11)60116-3
Google Scholar
[19]
N.A. Belov, D.G. Eskin, A.A. Aksenov, Multicomponent Phase Diagrams: Applications for Commercial Aluminum Alloys, Elsevier, Amsterdam, (2005).
Google Scholar
[20]
Z.N. Archakova, G.A. Balakhontsev, I.G. Basova, Structure and properties of semi-finished products from aluminum alloys. 2nd edition, Metallurgia Publisher, Moscow, (1984).
Google Scholar
[21]
D. Tsivoulas, P.B. Prangnell, The effect of Mn and Zr dispersoid-forming additions on recrystallization resistance in Al–Cu–Li AA2198 sheet, Acta Materialia, 77 (2014) 1-16.
DOI: 10.1016/j.actamat.2014.05.028
Google Scholar
[22]
M.L. Lobanov, A.A. Redikul'tsev, G. M Rusakov, Interrelation Between the Orientations of Deformation and Recrystallization in Hot Rolling of Anisotropic Electrical Steel, Met Sci Heat Treat., 57 (2015) 492-497.
DOI: 10.1007/s11041-015-9910-6
Google Scholar
[23]
G.M. Rusakov, A.G. Illarionov, Yu.N. Loginov, M.L. Lobanov, A.A. Redikul'tsev, Interrelation of Crystallographic Orientations of Grains in Aluminum Alloy AMg6 Under Hot Deformation and Recrystallization, Metal Science and Heat Treatment, 56 (2015).
DOI: 10.1007/s11041-015-9816-3
Google Scholar
[24]
Yu.N. Loginov, S.P. Burkin, V.V. Sapunzhi, The effect of aluminum alloy structure on variation of transversal dimensions of strip after stretcher straightening, Tsvetnye Metally, (7) 2002 71-73.
Google Scholar
[25]
C.J. Tseng, S.L. Lee, T.F. Wu, J.C. Lin, Effects of manganese on microstructure and mechanical properties of A206 alloys containing iron, J. Mater. Res., 17 (2002) 2243–2250.
DOI: 10.1557/jmr.2002.0330
Google Scholar
[26]
Z.N. Archakova, L.A. Kirillova, V.S. Sandler, Heat-resistant wrought aluminum alloys and prospects of their development, Metal Science and Heat Treatment, 25 (1983) 479-484.
DOI: 10.1007/bf00741933
Google Scholar
[27]
Z. Chen, P. Chen, C. Ma, Microstructures and mechanical properties of Al-Cu-Mn alloy with La and Sm addition, Rare Metals, 31 (2012) 332-335.
DOI: 10.1007/s12598-012-0515-6
Google Scholar
[28]
O.A. Romanova, N.N. Averkina, G.K. Nikisheva, Effect of silicon on the structure and properties of heat resistant aluminum alloy D21, Metal Science and Heat Treatment, 24 (1982) 198-200.
DOI: 10.1007/bf01166853
Google Scholar