[1]
X. Li, U. Fritsching, Process modeling pressure-swirl-gas-atomization for metal powder production, J. Mater. Process. Technol, 239 (2017) 1-17.
DOI: 10.1016/j.jmatprotec.2016.08.009
Google Scholar
[2]
A. Bin Anwar, Q. -C. Pham, Selective laser melting of AlSi10Mg: Effects of scan direction, part placement and inert gas flow velocity on tensile strength, J. Mater. Process. Technol, 240 (2017) 388–396.
DOI: 10.1016/j.jmatprotec.2016.10.015
Google Scholar
[3]
D. Buchbinder, H. Schleifenbaum, S. Heidrich, W. Meiners, J. Bültmann, High power Selective Laser Melting (HP SLM) of aluminum parts, Phys. Procedia, (2011) 271-278.
DOI: 10.1016/j.phpro.2011.03.035
Google Scholar
[4]
D. Buchbinder, W. Meiners, K. Wissenbach, R. Poprawe, Selective laser melting of aluminum die-cast alloy, Correlations between process parameters, solidification conditions, and resulting mechanical properties, J. Laser Appl., 27 (2015) S29205.
DOI: 10.2351/1.4906389
Google Scholar
[5]
X.P. Li, X.J. Wang, M. Saunders, A. Suvorova, L.C. Zhang, Y.J. Liu, M.H. Fang, Z.H. Huang, T.B. Sercombe, A selective laser melting and solution heat treatment refined Al-12Si alloy with a controllable ultrafine eutectic microstructure and 25% tensile ductility, Acta Mater, 95(2015).
DOI: 10.1016/j.actamat.2015.05.017
Google Scholar
[6]
E.O. Olakanmi, Selective laser sintering/melting (SLS/SLM) of pure Al, Al–Mg, and Al–Si powders: Effect of processing conditions and powder properties, J. Mater. Process. Technol., 213 (2013) 1387-1405.
DOI: 10.1016/j.jmatprotec.2013.03.009
Google Scholar
[7]
N. Read, W. Wang, K. Essa, M.M. Attallah, Selective laser melting of AlSi10Mg alloy: Process optimisation and mechanical properties development, Mater. Des., 65 (2015) 417-424.
DOI: 10.1016/j.matdes.2014.09.044
Google Scholar
[8]
M. Simonelli, C. Tuck, N.T. Aboulkhair, I. Maskery, I. Ashcroft, R.D. Wildman, R. Hague, A Study on the Laser Spatter and the Oxidation Reactions During Selective Laser Melting of 316L Stainless Steel, Al-Si10-Mg, and Ti-6Al-4V, Metall. Mater. Trans. A., 46 (2015).
DOI: 10.1007/s11661-015-2882-8
Google Scholar
[9]
P.A. Lykov, S.B. Sapozhnikov, R.M. Baitimerov, The manufacturing of the AlSi12-Al2O3composite powder for additive production methods, Mater. Sci. Forum, 870 (2016) 314-317.
DOI: 10.4028/www.scientific.net/msf.870.314
Google Scholar
[10]
L. Wang, J. Jue, M. Xia, L. Guo, B. Yan, D. Gu, Effect of the Thermodynamic Behavior of Selective Laser Melting on the Formation of In situ Oxide Dispersion-Strengthened Aluminum-Based Composites, Metals (Basel), 6 (2016) 286.
DOI: 10.3390/met6110286
Google Scholar
[11]
P. Yuan, D. Gu, D. Dai, Particulate migration behavior and its mechanism during selective laser melting of TiC reinforced Al matrix nanocomposites, Mater. Des., 82 (2015) 46-55.
DOI: 10.1016/j.matdes.2015.05.041
Google Scholar
[12]
R. Vrana, D. Koutny, D. Palousek, T. Zikmund, Impact resistance of lattice structure made by selective laser melting from AlSi12 alloy, MM Sci. J., (2015) 849-852.
DOI: 10.17973/mmsj.2015_12_201547
Google Scholar
[13]
E.V. Safonov, K.A. Bromer, A.O. Shul'ts, V.E. Roshchin and P.A. Lykov, RU Patent 110312.
Google Scholar
[14]
P.A. Lykov, R.M. Baitimerov, D.A. Zherebtsov, Gas atomization of the liquid 82N7HSR nickel base alloy to produce micropowder for additive and coating technologies, Mater. Sci. Forum, 870 (2016) 309-313.
DOI: 10.4028/www.scientific.net/msf.870.309
Google Scholar
[15]
P.A. Lykov, E. V Safonov, A.O. Shults, Powder particle formation mechanism with dispersion of different molten metals, Metallurgist, 57 (2013) 232-236.
DOI: 10.1007/s11015-013-9717-x
Google Scholar
[16]
P.A. Lykov, V.E. Roshchin, E.I. Vorob'ev, Influence of the spraying parameters on the characteristics of the metallic powder produced, Steel Transl, 42 (2012) 483-485.
DOI: 10.3103/s0967091212060125
Google Scholar