Influence of Oxygen Concentration on Plasma Dynamic Synthesis Product in Fe-O System

Article Preview

Abstract:

In spite of being known for centuries, iron oxides are still important. Such modifications as magnetite Fe3O4 and epsilon phase ε-Fe2O3 are of great scientific and practical interest due to their promising electromagnetic properties. Nonetheless, only few methods allow synthesizing both of these phases, but they have some well-known disadvantages, which limit the possibility of using them widely. This work shows a unique method of synthesizing these materials in one short-duration plasma dynamic process using a coaxial magnetoplasma accelerator with iron electrode system. The plasma chemical reaction occurs between the iron-containing plasma and gaseous precursor (oxygen). The influence of oxygen pressure on the products of plasma dynamic synthesis was also studied in the framework of this investigation. It was found that the higher oxygen concentration leads to the formation of product with predominant content of epsilon iron oxide ε-Fe2O3, as well as lower oxygen concentration results in obtaining the product with the dominance of magnetite phase.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 265)

Pages:

652-656

Citation:

Online since:

September 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] R.M. Cornell, U. Schwertmann, The Iron Oxides: Structure, Properties, Reactions, Occurrence and Uses, Wiley-VCH Publishers, Weinheim, Germany, (2003).

Google Scholar

[2] Z. Markova, G. Zoppellaro, J. Tucek, R. Zboril, Tailored functionalization of iron oxide nanoparticles for MRI, drug delivery, magnetic separation and immobilization of biosubstances, Biotech. Adv., 33 (2015) 1162–1176.

DOI: 10.1016/j.biotechadv.2015.02.003

Google Scholar

[3] A. Sivkov, E. Naiden, A. Ivashutenko, I. Shanenkov, Plasma dynamic synthesis and obtaining ultrafine powders of iron oxides with high content of ε-Fe2O3, J. Magn. Magn. Mater., 405 (2016) 158-168.

DOI: 10.1016/j.jmmm.2015.12.072

Google Scholar

[4] K.Y. Rajpure, Exploring structural and magnetic properties of nanocrystalline iron oxide synthesized by autocombustion method, Superlattices Microstruct., 77 (2015) 181-195.

DOI: 10.1016/j.spmi.2014.11.012

Google Scholar

[5] M. Tadic, V. Spasojevic, V. Kusigerski, D. Markovic, M. Remskar, Formation of ε-Fe2O3 phase by the heat treatment of α-Fe2O3/SiO2 nanocomposite, Scr. Mater., 58 (2008) 703-706.

DOI: 10.1016/j.scriptamat.2007.12.009

Google Scholar

[6] G.V. Kuznetsov, D.V. Feoktistov, E.G. Orlova, Evaporation of liquid droplets from a surface of anodized aluminum, Thermophys. Aeromech., 23 (2016) 17-22.

DOI: 10.1134/s0869864316010029

Google Scholar

[7] G.V. Kuznetsov, D.V. Feoktistov, E.G. Orlova, K.A. Batishcheva, Regimes of water droplet evaporation on copper substrates, Colloid Journal, 78 (2016) 335-339.

DOI: 10.1134/s1061933x1603008x

Google Scholar

[8] R. Zboril, M. Maslan, D. Petridis, Iron (III) oxides from thermal processes – synthesis, structural and magnetic properties, Mossbauer spectroscopy characterization, and applications, Chem. Mater., 14 (2002) 969-982.

DOI: 10.1021/cm0111074

Google Scholar

[9] S. Mornet, S. Vasseur, F. Grasset, E. Duguet, Magnetic nanoparticle design for medical diagnosis and therapy, J. Mater. Chem., 14 (2004) 2161-2751.

DOI: 10.1039/b402025a

Google Scholar

[10] J. Gonzalez, O. Chubykalo, M. Gonzalez, Encyclopedia of Nanoscience and Nanotechnology, American Scientific, Stevenson Ranch, (2004).

Google Scholar

[11] K.C. Barick, B.S.D. Ch.S. Varaprasad, D. Bahadur, Structural and magnetic properties of γ- and ε-Fe2O3 nanoparticles dispersed in silica matrix, Non Cryst. Solids, 356 (2010) 153-159.

DOI: 10.1016/j.jnoncrysol.2009.10.001

Google Scholar

[12] M. Yoshikiyo, A. Namai, M. Nakajima, K. Yamaguchi, T. Suemoto, S. Ohkoshi, High-frequency millimeter wave absorption of indium-substituted ε-Fe2O3 spherical nanoparticles, Appl. Phys., 115 (2014) 172613-172615.

DOI: 10.1063/1.4870168

Google Scholar

[13] A. Namai, S. Sakurai, M. Nakajima, T. Suemoto, K. Matsumoto, M. Goto, S. Sasaki, S. Ohkoshi, Synthesis of an electromagnetic wave absorber for high-speed wireless communication, Am. Chem. Soc., 131(3) (2009) 1170-1173.

DOI: 10.1021/ja807943v

Google Scholar

[14] J. Wei, J. Liu, S. Li, Electromagnetic and microwave absorption properties of Fe3O4 magnetic films plated on hollow glass spheres, Magn. Magn. Mater., 312 (2007) 414-417.

DOI: 10.1016/j.jmmm.2006.11.128

Google Scholar

[15] E. Tronc, C. Chaneac, J.P. Jolivet, Structural and Magnetic Characterization of ε-Fe2O3, J. Solid State Chem., 139(1) (1998) 93-104.

DOI: 10.1006/jssc.1998.7817

Google Scholar

[16] J. Tucek, R. Zboril, A. Namai, S. Ohkoshi, ε-Fe2O3: An advanced nanomaterial exhibiting giant coercive field, millimeter-wave ferromagnetic resonance, and magnetoelectric coupling, Chem. Mater., 22 (2010) 6483-6505.

DOI: 10.1002/chin.201109222

Google Scholar

[17] P. Mathur, A. Thakur, M. Singh, Low temperature processing of Mn-Zn nanoferrites, J. Mater. Sci., 42 (2007) 8189-8192.

DOI: 10.1007/s10853-007-1690-y

Google Scholar

[18] A. Thakur, A. Chevalier, J.L. Mattei, P. Queff́lec, Low-loss spinel nanoferrite with matching permeability and permittivity in the ultrahigh frequency range, Appl. Phys., 108 (2010).

DOI: 10.1063/1.3455875

Google Scholar

[19] A. Sivkov, A. Pak, I. Shanenkov, Y. Kolganova, I. Prosvirin, Effect of energy on plasmodynamic synthesis product in the carbon-nitrogen system, Adv. Mater. Res., 880 (2014) 36-41.

DOI: 10.4028/www.scientific.net/amr.880.36

Google Scholar

[20] I. Shanenkov, A. Sivkov, A. Pak, Y. Kolganova, Effect of gaseous medium pressure on plasmadynamic synthesis product in the C-N system with melamine, Adv. Mater. Res., 1040 (2014) 813-818.

DOI: 10.4028/www.scientific.net/amr.1040.813

Google Scholar