[1]
R.M. Cornell, U. Schwertmann, The Iron Oxides: Structure, Properties, Reactions, Occurrence and Uses, Wiley-VCH Publishers, Weinheim, Germany, (2003).
Google Scholar
[2]
Z. Markova, G. Zoppellaro, J. Tucek, R. Zboril, Tailored functionalization of iron oxide nanoparticles for MRI, drug delivery, magnetic separation and immobilization of biosubstances, Biotech. Adv., 33 (2015) 1162–1176.
DOI: 10.1016/j.biotechadv.2015.02.003
Google Scholar
[3]
A. Sivkov, E. Naiden, A. Ivashutenko, I. Shanenkov, Plasma dynamic synthesis and obtaining ultrafine powders of iron oxides with high content of ε-Fe2O3, J. Magn. Magn. Mater., 405 (2016) 158-168.
DOI: 10.1016/j.jmmm.2015.12.072
Google Scholar
[4]
K.Y. Rajpure, Exploring structural and magnetic properties of nanocrystalline iron oxide synthesized by autocombustion method, Superlattices Microstruct., 77 (2015) 181-195.
DOI: 10.1016/j.spmi.2014.11.012
Google Scholar
[5]
M. Tadic, V. Spasojevic, V. Kusigerski, D. Markovic, M. Remskar, Formation of ε-Fe2O3 phase by the heat treatment of α-Fe2O3/SiO2 nanocomposite, Scr. Mater., 58 (2008) 703-706.
DOI: 10.1016/j.scriptamat.2007.12.009
Google Scholar
[6]
G.V. Kuznetsov, D.V. Feoktistov, E.G. Orlova, Evaporation of liquid droplets from a surface of anodized aluminum, Thermophys. Aeromech., 23 (2016) 17-22.
DOI: 10.1134/s0869864316010029
Google Scholar
[7]
G.V. Kuznetsov, D.V. Feoktistov, E.G. Orlova, K.A. Batishcheva, Regimes of water droplet evaporation on copper substrates, Colloid Journal, 78 (2016) 335-339.
DOI: 10.1134/s1061933x1603008x
Google Scholar
[8]
R. Zboril, M. Maslan, D. Petridis, Iron (III) oxides from thermal processes – synthesis, structural and magnetic properties, Mossbauer spectroscopy characterization, and applications, Chem. Mater., 14 (2002) 969-982.
DOI: 10.1021/cm0111074
Google Scholar
[9]
S. Mornet, S. Vasseur, F. Grasset, E. Duguet, Magnetic nanoparticle design for medical diagnosis and therapy, J. Mater. Chem., 14 (2004) 2161-2751.
DOI: 10.1039/b402025a
Google Scholar
[10]
J. Gonzalez, O. Chubykalo, M. Gonzalez, Encyclopedia of Nanoscience and Nanotechnology, American Scientific, Stevenson Ranch, (2004).
Google Scholar
[11]
K.C. Barick, B.S.D. Ch.S. Varaprasad, D. Bahadur, Structural and magnetic properties of γ- and ε-Fe2O3 nanoparticles dispersed in silica matrix, Non Cryst. Solids, 356 (2010) 153-159.
DOI: 10.1016/j.jnoncrysol.2009.10.001
Google Scholar
[12]
M. Yoshikiyo, A. Namai, M. Nakajima, K. Yamaguchi, T. Suemoto, S. Ohkoshi, High-frequency millimeter wave absorption of indium-substituted ε-Fe2O3 spherical nanoparticles, Appl. Phys., 115 (2014) 172613-172615.
DOI: 10.1063/1.4870168
Google Scholar
[13]
A. Namai, S. Sakurai, M. Nakajima, T. Suemoto, K. Matsumoto, M. Goto, S. Sasaki, S. Ohkoshi, Synthesis of an electromagnetic wave absorber for high-speed wireless communication, Am. Chem. Soc., 131(3) (2009) 1170-1173.
DOI: 10.1021/ja807943v
Google Scholar
[14]
J. Wei, J. Liu, S. Li, Electromagnetic and microwave absorption properties of Fe3O4 magnetic films plated on hollow glass spheres, Magn. Magn. Mater., 312 (2007) 414-417.
DOI: 10.1016/j.jmmm.2006.11.128
Google Scholar
[15]
E. Tronc, C. Chaneac, J.P. Jolivet, Structural and Magnetic Characterization of ε-Fe2O3, J. Solid State Chem., 139(1) (1998) 93-104.
DOI: 10.1006/jssc.1998.7817
Google Scholar
[16]
J. Tucek, R. Zboril, A. Namai, S. Ohkoshi, ε-Fe2O3: An advanced nanomaterial exhibiting giant coercive field, millimeter-wave ferromagnetic resonance, and magnetoelectric coupling, Chem. Mater., 22 (2010) 6483-6505.
DOI: 10.1002/chin.201109222
Google Scholar
[17]
P. Mathur, A. Thakur, M. Singh, Low temperature processing of Mn-Zn nanoferrites, J. Mater. Sci., 42 (2007) 8189-8192.
DOI: 10.1007/s10853-007-1690-y
Google Scholar
[18]
A. Thakur, A. Chevalier, J.L. Mattei, P. Queff́lec, Low-loss spinel nanoferrite with matching permeability and permittivity in the ultrahigh frequency range, Appl. Phys., 108 (2010).
DOI: 10.1063/1.3455875
Google Scholar
[19]
A. Sivkov, A. Pak, I. Shanenkov, Y. Kolganova, I. Prosvirin, Effect of energy on plasmodynamic synthesis product in the carbon-nitrogen system, Adv. Mater. Res., 880 (2014) 36-41.
DOI: 10.4028/www.scientific.net/amr.880.36
Google Scholar
[20]
I. Shanenkov, A. Sivkov, A. Pak, Y. Kolganova, Effect of gaseous medium pressure on plasmadynamic synthesis product in the C-N system with melamine, Adv. Mater. Res., 1040 (2014) 813-818.
DOI: 10.4028/www.scientific.net/amr.1040.813
Google Scholar