[1]
M. Muttashar, W. Lokuge, W. Karunasena, Geopolymer concrete: the green alternative with suitable structural properties, Proceeding of 23rd Australasian Conference on the Mechanics of Structures and Materials, Byron Bay, Australia, (2014) 101-106.
Google Scholar
[2]
F.N. Okoye, J. Durgaprasad, N.B. Singh, Fly ash/Kaolin based geopolymer green concretes and their mechanical properties, Data in Brief., 5 (2015) 739-744.
DOI: 10.1016/j.dib.2015.10.029
Google Scholar
[3]
I.I. Bashar, U.J. Alengaram, M.Z. Jumaat, A. Islam, Development of sustainable geopolymer mortar using industrial waste, Materials Today: Proceedings, 3 (2016) 125-129.
DOI: 10.1016/j.matpr.2016.01.038
Google Scholar
[4]
J. Davidovits, Geopolymer chemistry and applications, Geopolymer Institute, Saint-Quentin, (2015).
Google Scholar
[5]
M. Izquierdo, X. Querol, J. Davidovits, D. Antenucci, H. Nugteren, C. Fernández-Pereira, Coal fly ash-slag-based geopolymers: Microstructure and metal leachin, Journal of Hazardous Materials, 166 (1) (2009) 561-566.
DOI: 10.1016/j.jhazmat.2008.11.063
Google Scholar
[6]
N.A. Eroshkina, M.O. Korovkin, Investigation of properties of geopolymer binder based on magmatic rocks and concrete on their basis, Proceeding of 19 Internationale Baustofftagung ibausil, Weimar, (2015) 971-978.
Google Scholar
[7]
N.A. Eroshkina, M.O. Korovkin, Geopolymer building materials based on industrial waste, Penza State University of architecture and construction, Penza, (2014).
Google Scholar
[8]
D. Gimeno, J. Davidovits, C. Marini, P. Rocher, S. Tocco, S. Cara, N. Diaz, C. Segura, G. Sistu, Development of silicate - based cement from glassy alkaline volcanic rocks: interpretation of preliminary data related to chemical - mineralogical composition of geologic raw materials, Bol. Soc. Esp. Cerám, Vidrio, 42 (2003).
DOI: 10.3989/cyv.2003.v42.i2.643
Google Scholar
[9]
L.N. Tchadjie, J.N.Y. Djobo, N. Ranjbar, H.K. Tchakoute, B.B.D. Kenne, A. Elimbi, D. Njopwouo, Potential of using granite waste as raw material for geopolymer synthesis, Ceramics International, 2 (2016) 3046–3055.
DOI: 10.1016/j.ceramint.2015.10.091
Google Scholar
[10]
D. Wiyono, Antoni, D. Hardjito, Improving the durability of pozzolan concrete using alkaline solution and geopolymer coating, Procedia Engineering, 125 (2015) 747-753.
DOI: 10.1016/j.proeng.2015.11.121
Google Scholar
[11]
A. Wardhono, D. W. Law, A. Strano, The Strength of Alkali-activated Slag/fly Ash Mortar Blends at Ambient Temperature, Procedia Engineering, 125 (2015) 650-656.
DOI: 10.1016/j.proeng.2015.11.095
Google Scholar
[12]
S. Puligilla, P. Mondal, Role of slag in microstructural development and hardening of fly ash-slag geopolymer, Cement and Concrete Research, 43 (2013) 70-80.
DOI: 10.1016/j.cemconres.2012.10.004
Google Scholar
[13]
N. Eroshkina, M. Korovkin, The Effect of the Mixture Composition and Curing Conditions on the Properties of the Geopolymer Binder Based on Dust Crushing of the Granite, Procedia Engineering, 150 (2016) 1605-1609.
DOI: 10.1016/j.proeng.2016.07.137
Google Scholar
[14]
P. Sukmak, S. Horpibulsuk, S.L. Shen, P. Chindaprasirt, C. Suksiripattanapong, Factors influencing strength development in clay–fly ash geopolymer, Construction and Building Materials, 47 (2013) 1125-1136.
DOI: 10.1016/j.conbuildmat.2013.05.104
Google Scholar
[15]
M. Zhang, T. El-Korchi, G. Zhang, J. Liang, M. Tao, Synthesis factors affecting mechanical properties, microstructure, and chemical composition of red mud-fly ash based geopolymers, Fuel, 134 (2014) 315-325.
DOI: 10.1016/j.fuel.2014.05.058
Google Scholar
[16]
N.A. Eroshkina, M.O. Korovkin, The influence of parameters of mineral alkaline binder composition on the strength and shrinkage of concrete, Bulletin of Volgograd State University of Architecture and Civil Engineering. Series: Construction and Architecture, 27 (2012).
Google Scholar
[17]
A.V. Kind, V.F. Zhuravlev, Conductivity hardening cement, Cement, 9-10 (1932) 21-26.
Google Scholar
[18]
L.A. Malinina, I.V. Zalipaev, Study of concrete strength growth kinetics in the process of steaming, Questions of general technology and the acceleration of concrete hardening, Stroyizdat, Moscow, (1969) 102-115.
Google Scholar
[19]
S.A. Mironov, The growth of concrete strength by steaming and subsequent hardening, Stroyizdat, Moscow, (1973).
Google Scholar
[20]
V.I. Kalashnikov, S.V. Ananiev, S.V. Kalashnikov, Structural-topological analysis of composite binders, Proceeding of intern. scientific and engineering conference on new energy- and resource-intensive technologies in the production of building materials, Penza, (2006).
Google Scholar