[1]
Large hovercraft performance and economics, Hovercraft Technology, Economics and Applications, (1989) 205-293.
DOI: 10.1016/b978-0-444-88152-6.50009-0
Google Scholar
[2]
The results of research of prospects for high-speed transport fleet in Russia, St. Petersburg, (2010).
Google Scholar
[3]
Experimental and theoretical investigation of physical and mechanical properties of materials and standard units skirt amphibious hovercrafts baronetage type, Lobachevsky State University, N. Novgorod, (2012).
Google Scholar
[4]
Y.Y. Benoit, Foundations of the theory of hovercraft, Sudostroenie, Leningrad, (1970).
Google Scholar
[5]
G.F. Demeshko, Fencing airbag on ships and transport machines: textbook. Allowance, LCI, Leningrad, (1982).
Google Scholar
[6]
G.F. Demeshko, Ship Design, Amphibious hovercraft, Shipbuilding, Saint-Petersburg, (1992).
Google Scholar
[7]
T.A. Dyakova, V.V. Klitschko, Calculation of parameters of the aft flexible fencing, Ship Design, TSNII RUMB, Petersburg, 29 (1981) 18-20.
Google Scholar
[8]
V.V. Zaitsev, Physical model of the side section of the flexible fence, Vladivostok, 37 (1979) 47-55.
Google Scholar
[9]
T. Belytschko, Stress projection for membrane and shear locking in shell finite elements, Comp. Meth. Appl. Mech. Engng., 51 (1985) 221-258.
Google Scholar
[10]
D.J. Benson, A mixture theory for contact in multi-material Eulerian formulations, Comput. Methods App. Mech. Engrg., 40 (1997) 56-86.
Google Scholar
[11]
M. Souli, A. Ouahsine, L. Lewin, ALE and fluid-solid interaction problems, Comput. Methods. App. Mech. Engrg, (2000) 659-675.
DOI: 10.1016/s0045-7825(99)00432-6
Google Scholar
[12]
L. Yun, A. Bliault, Theory and design of air cushion craft, Butterworth-Heinemann, (2000) 632.
DOI: 10.1016/b978-034067650-9/50003-6
Google Scholar
[13]
H. -J. Bungartz, M. Schäfer, Fluid-Structure Interaction: Modeling, Simulation, Optimization. Lecture Notes in Computational Science and Engineering, Springer, (2006) 394.
Google Scholar
[14]
B. Hubner, U. Seidel, Partitioned solution to strongly coupled hydroelastic systems arising in hydro turbine design, 25th IAHR Symposium on Hydraulic Machinery and Systems, University of Timisoara, 52 (2006) 55-64.
Google Scholar
[15]
B. Hubner, U. Seidel, S. Roth, Application of fluid-structure coupling to predict the dynamic behavior of turbine components, 25th IAHR Symposium on Hydraulic Machinery and Systems, University of Timisoara, 12 (2010) 10.
Google Scholar
[16]
P.A. Sullivan, Research on the Stability of Air Cushion Systems, Institute for Aerospace Studies, University of Toronto, Canada, 238 (1979).
Google Scholar
[17]
R. Wuchner, A. Kupzok, K. -U. Bletzinger, Analysis of Free Form Membranes Subject to Wind Using FSI, Textile Composites and Inflatable Structures II, Springer, (2008) 141-161.
DOI: 10.1007/978-1-4020-6856-0_9
Google Scholar
[18]
M. Cohen, T. Miloh, G. Zilman, Wave resistance of a hovercraft moving in water with nonrigid bottom, Ocean Engineering, 28 (2001) 1461-1478.
DOI: 10.1016/s0029-8018(00)00065-2
Google Scholar
[19]
Dictino Chaos, David Moreno-Salinas, Rocío Muñoz, Joaquín Aranda, Control no lineal de un aerodeslizador no holonómico con acciones de control limitadas, Revista Iberoamericana de Automática e Informática Industrial (RIAI), 10 (2013) 402-412.
DOI: 10.1016/j.riai.2013.05.012
Google Scholar
[20]
ISO 2411: 2000, Rubber- or plastics-coated fabrics, Determination of coating adhesion.
Google Scholar
[21]
ISO 4674-1: 2016. Rubber- or plastics-coated fabrics, Determination of tear resistance, Part 1: Constant rate of tear methods.
DOI: 10.3403/30295527
Google Scholar
[22]
ISO 4675: 1990. Rubber- or plastics-coated fabrics, Low-temperature bend test.
Google Scholar
[23]
ISO 1421: 2016. Rubber- or plastics-coated fabrics, Determination of tensile strength and elongation at break.
DOI: 10.3403/01435212
Google Scholar