Investigation of Titania Nanotube Arrays Obtained from Glycerol Electrolytes

Article Preview

Abstract:

Titania nanotube arrays were formed by electrochemical anodic etching of titanium from glycerol solutions with addition of 0.5% HF and analyzed by scanning probe microscopy and ellipsometric analyzes. Potentiostatic curves allow identifying several different stages of growth of nanotubes of titanium dioxide, however, this method does not establish specific parameters of the surface. We demonstrated that analysis of the spectrum ellipsometric parameters Psi and Delta can used as a criterion of quality, frequency, depth and other characteristics of the obtained arrays of titania nanotube. The use of these methods of analysis allowed to fully characterize the different stages of growth of titania nanotube from glycerol solutions and can be used for quality control the resulting structures for various applications.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 265)

Pages:

667-671

Citation:

Online since:

September 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] X. Quan, X. Ruan, H. Zhao, S. Chen, Y. Zhao, Environ Pollut, 147 (2007) 409.

Google Scholar

[2] G. Guo, C. He, Z. Wang, F. Gu and D. Han, Talanta, 72 (2007) 1687.

Google Scholar

[3] G.K. Mor, O.K. Varghese, M. Paulose, K. G. Ong and C.A. Grimes, Thin Solid Films, (2006).

Google Scholar

[4] A.M. Azad, S.A. Akbar, S.G. Mhaisalkar, L.D. Birkefeld and K.S. Goto, Electrochem. Soc., 139 (1992) 3690.

DOI: 10.1149/1.2069145

Google Scholar

[5] J.H. Park, S. Kim and A.J. Bard, Nano Lett., 6 (2006) 24-28.

Google Scholar

[6] M. Paulose, G.K. Mor, O.K. Varghese, K. Shankar and C.A. Grimes, Photochem. Photobiol., A, 178 (2006) 8.

Google Scholar

[7] R. Beranek, H. Tsuchiya, T. Sugishima, J.M. Macak, L. Taveira, S. Fujimoto, H. Kisch and P. Schmuki, Appl. Phys. Lett., 87 (2005).

DOI: 10.1063/1.2140085

Google Scholar

[8] N. Wang, H. Li, W. Lu, J. Li, J. Wang, Z. Zhang, Y. Liu, Biomater, 32 (2011) 6900.

Google Scholar

[9] H. Oh, J. Lee, Y. Jeong, Y. Kim and C. Chi, Surf. Coat. Technol., 198 (2005) 247.

Google Scholar

[10] S. Oh, R.R. Finones, C. Daraio, L. Chen and S. Jin, Biomaterials, 26 (2005) 4938.

Google Scholar

[11] J-Y. Kim, T. Sekino, S-I. Tanaka, Mater Sci., 46 (2011) 1749.

Google Scholar

[12] Y. Limmongkona, J. Johnsb, L. Charerntanyarakc, ScienceAsia, 39 (2013) 284-293.

Google Scholar

[13] V. Zwilling, E. Darque-Ceretti, A. Boutry-Forveille, D. David, M.Y. Perrin, and M. Aucouturier, Surf. Interface Anal., 27 (1999) 629-637.

DOI: 10.1002/(sici)1096-9918(199907)27:7<629::aid-sia551>3.0.co;2-0

Google Scholar

[14] D. Gong, C.A. Grimes, O.K. Varghese, W. Hu, R.S. Singh, Z. Chen, and E.C. Dickey, Mater. Res., 16 (2001) 3331-3334.

Google Scholar

[15] Beranek, H. Hildebrand and P. Schumki, Electrochem. Soild-State Lett., 6 (2003).

Google Scholar

[16] J.M. Macak, K. Sirotna, and P. Schmuki, Electrochim. Acta, 50 (2005) 3679-3684.

Google Scholar

[17] Won HR, Chan JP, Hyuk SK., Nanosci Nanotechnol, 8 (2008).

Google Scholar

[18] M. Paulose, K. Shankar, S. Yoriya, H.E. Prakasam, O.K. Varghese, G.K. Mor, T.J. Latempa, A. Fitzgerald, C. A/ Grimes, Phys Chem B, 110 (2006) 16179.

DOI: 10.1021/jp064020k

Google Scholar

[19] J. Zhao, X. Wang, R. Chen, L. Li, Solid State Commun, 134 (2005) 705.

Google Scholar

[20] Z. Su, W. Zhou, Mater Chem, 21 (2011) 8955.

Google Scholar

[21] S. Joo, I. Muto, N. Hara, Journal of The Electrochemical Society, 155(4) (2008) 154-161.

Google Scholar

[22] Y. Yin, Z. Jin, F. Hou, X. Wang, Am. Ceram. Soc., 90(8) (2007) 2384-2389.

Google Scholar