Mediated Electrosynthesis of Cobalt Nanoparticles from Ionic Liquids

Article Preview

Abstract:

The electrochemical behavior of cobalt in the presence of methylviologen (MV2+) dichloride was investigated in choline chloride-urea (1:2 molar ratio) deep eutectic solvent containing 1 mM CoSO4 and 1 mM MV2+. Cyclic voltammetry of cobalt electrolyte after reduction process at stationary potential has shown the shift of oxidation peak to cathodic region with increase of reduction process time. The investigations carried out after electrolysis of the system containing 1 mM CoSO4 and 1 mM MV2+ at the reduction peak of methylviologen dichloride have shown that there was an accumulation of cobalt reduced form in near-electrode region whereas the concentration of methylviologen reduced form has not changed. This may indicate that methylviologen dichloride is a mediator in electrochemical processes with respect to cobalt in the system under consideration.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 265)

Pages:

679-683

Citation:

Online since:

September 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Y. Yu, A. Mendoza-Garcia, B. Ning and S. Sun, Cobalt substituted magnetite nanoparticles and their assembly into ferrimagnetic nanoparticle arrays, Advanced Materials, 25(22) (2013) 3090-3094.

DOI: 10.1002/adma.201300595

Google Scholar

[2] V.F. Puntes, K.M. Krishnan and A.P. Alivisatos, Colloidal nanocrystal shape and size control: the case of cobalt, Science, 291(5511) (2001) 2115-2117.

DOI: 10.1126/science.1058495

Google Scholar

[3] V. Skumryev, S. Stoyanov, Y. Zhang, G. Hadjipanayis, D. Givord and J. Nogues, Beating the superparamagnetic limit with exchange bias, Nature, 423(6942) (2003) 850-853.

DOI: 10.1038/nature01687

Google Scholar

[4] I. -W. Park, M. Yoon, Y.M. Kim, Y. Kim, H. Yoon, H.J. Song, V. Volkov, A. Avilov, Y.J. Park, Solid State Communications, 44 (2003) 385-389.

DOI: 10.1016/s0038-1098(03)00189-3

Google Scholar

[5] H.T. Yang, Y.K. Su, C.M. Shen, T.Z. Yang, H.J. Gao, Surf. Interface Anal., 36 (2004) 155-160.

Google Scholar

[6] Y.H. Chung, S. -M. Park, Journal of Applied Electrochemistry, 30 (2000) 685-691.

Google Scholar

[7] R. Andreu, D. Pletcher, Electrochimica Acta, 48 (2003) 1065-1071.

Google Scholar

[8] R. Pauliukaite, M. Christopher, A. Brett, Electroanalysis, 12 (2008) 1275-1285.

Google Scholar

[9] T. Broese, R. Francke, Org. Lett., 18 (2016) 5896-5899.

Google Scholar

[10] V.V. Yanilkin, N.V. Nastapova, G.R. Nasretdinova, S.V. Fedorenko, M.E. Jilkin, A.R. Mustafina, AT. Gubaidullin, Yu.N. Osin, RSC Adv., 6 (2016) 1851-1859.

DOI: 10.1039/c5ra21328b

Google Scholar

[11] T. Tsuda, C.L. Hussey, The Electrochemical Society Interface, Spring, (2007) 42-49.

Google Scholar

[12] M.C. Buzzeo, R.G. Evans, R.G. Compton, ChemPhysChem, 5 (2004) 1106-1120.

Google Scholar

[13] F. Faridbod, M.R. Ganjali, P. Norouzi, S. Riahi, H. Rashedi, Ionic Liquids: Applications and Perspectives, (2011) 643-658.

DOI: 10.5772/14702

Google Scholar

[14] D.I. Dyachenko, V.T. Fomichev, Natural Sciences. Chemistry. University proceedings, Volga region, 1(13) (2016) 51-59.

Google Scholar

[15] C. Du, B. Zhao, X.B. Chen, N. Birbilis, Haiyan Yang Scientific Reports 6: 29225, (2016).

Google Scholar

[16] L. Anicai, S. Costovici, A. Cojocaru, A. Manea, T. Visan, Transactions of the IMF, 6(93) (2015) 302-312.

DOI: 10.1080/00202967.2015.1117262

Google Scholar