[1]
T.V. Rajan, C.P. Sharma, and A. Sharma, Heat treatment principles and techniques, PHI Learning Pvt. Ltd., (2012).
Google Scholar
[2]
J.R. Davis, Surface Hardening of Steels Understanding the Basics, ASM International, USA, (2002).
Google Scholar
[3]
Y.B. Guo, and G.M. Janowski, Microstructural Characterization of White Layers by Hard Turning and Grinding. Trans, (2004) 367-374.
Google Scholar
[4]
Y.B. Guo and A.W. Warren, Microscale Mechanical Behavior of the Subsurface by Finishing Processes, ASME J. Manuf. Sci. Eng., 127 (2004) 333-338.
Google Scholar
[5]
S. Naik et al, Experimental Investigation of Hard Turning. 2nd Int. Mach. & Grinding Conf., Dearborn, MI, (1997) 224-308.
Google Scholar
[6]
J. Kundrak, A.G. Mamalis, K. Gyani, V. Bana, Surface layer microhardness changes with high-speed turning of hardened steels, Advanced manufacturing technology, 53(1) (2011) 105-112.
DOI: 10.1007/s00170-010-2840-y
Google Scholar
[7]
Z.Q. Liu, X. Ai and Z.H. Wang, A Comparison Study of Surface Hardening by Grinding Versus Machining, Key Engineering Materials, 304-305 (2006) 156-160.
DOI: 10.4028/www.scientific.net/kem.304-305.156
Google Scholar
[8]
K. Salonitis, Grind hardening process, Verlag: Springer-Verlag Gmbh (2015).
Google Scholar
[9]
Т. Foeckerer, M.F. Zaeh, О.В. Zhang, A Three-Dimensional Analytical Model to Predict the Thermo-Metallurgical Effects within the Surface Layer During Grinding and Grind-Hardening, International Journal of Heat and Mass Transfer, 56 (2013) 223-237.
DOI: 10.1016/j.ijheatmasstransfer.2012.09.029
Google Scholar
[10]
G. Hyatt et al, Integration of Heat Treatment into the Process Chain of a Mill Turn Center by Enabling External Cylindrical Grind-Hardening, Production Engineering - Research and Development (WGP Annals), 7 6 (2013) 571-584.
DOI: 10.1007/s11740-013-0465-3
Google Scholar
[11]
N. Zubkov, S. Vasiliev, V. Poptsov, RU patent 2556897, The surface quench hardening method by cutting and deforming tools, (2014).
Google Scholar
[12]
N. Zoubkov and A. Ovtchinnikov, Method and Apparatus of Producing a Surface With Alternating Ridges and Depressions, U.S. Patent No. 5, 775, 187. 5 (1998).
Google Scholar
[13]
I.A. Popov et al, Heat Transfer during the Boiling of Liquid on Microstructured Surfaces. Part 1: Heat Transfer during the Boiling of Water, Thermal Engineering, 60(3) (2013) 157-165.
DOI: 10.1134/s004060151303004x
Google Scholar
[14]
R. Kukowski, MDT - Micro deformation technology, Proceedings of the ASME Int. Mech. Eng. Congr. RD&D Expo, Washington, DC, (2003) 305-308.
Google Scholar
[15]
P. Thors and N. Zoubkov, Method for Making Enhanced Heat Transfer Surfaces U.S. Patent No. 8, 573, 022 (2013).
Google Scholar
[16]
A. Yakomaskin et al, Investigation of Heat Transfer in Evaporator of Microchannel Loop Heat Pipe ASME J. Heat Transfer, 135(10) (2013)101-106.
DOI: 10.1115/1.4024502
Google Scholar
[17]
L. Solovyeva et al, Novel Electrical Joints Using Deformation Machining Technology, Part I: Computer Modeling, IEEE Trans. Compon., Packag., Manuf. Technol., 2(10) (2012) 1711-1717.
DOI: 10.1109/tcpmt.2012.2207723
Google Scholar
[18]
L. Solovyeva et al, Novel Electrical Joints Using Deformation Machining Technology, Part II: Experimental Verification, IEEE Trans. Compon., Packag., Manuf. Technol., 2(10) (2012) 1718-1722.
DOI: 10.1109/tcpmt.2012.2199755
Google Scholar
[19]
F. Klocke, Manufacturing Processes 1: Cutting. Berlin, Springer-Verlag, (2011).
Google Scholar
[20]
S.K. Chou and C.J. Evans, White layers and thermal modeling of hard turning surfaces, Int. Journal of Machine Tools & Manufacture, 39 (1999) 1863-1881.
DOI: 10.1016/s0890-6955(99)00036-x
Google Scholar
[21]
P. Davim, Machining of Hard Materials – London: Springer-Verlag London Limited, (2011).
Google Scholar
[22]
T. Burakowski T. Wierzchon, Surface Engineering of Metals: Principles, Equipment, Technologies, Materials Science & Technology) CRC Press (1998).
DOI: 10.1201/9781420049923
Google Scholar
[23]
J. Dutta Majumdar and I. Manna, Laser-Assisted Fabrication of Materials, Springer Series in Materials Science, Springer-Verlag Berlin Heidelberg, (2013).
DOI: 10.1007/978-3-642-28359-8
Google Scholar