Phase Transformations in Novel Medium Carbon High Hardenability Steels

Article Preview

Abstract:

Novel steels with high hardenability were proposed to replace the conventional HY-TUF steels for the large parts manufacturing. The chemical composition of the steels under consideration was, mass. %: C – 0.16...0.18; Cr – 2.35...2.55; Mn – 0.67...1.99; Si – 0.76...1.03; Ni – 1.17...2.31; Mo – 0.34...0.47; S. P < 0.025. The dilatometer experiments revealed that during the continuous cooling of the steels with the constant rates 0.1... 30 °C/s only martensite and bainite transformations occurred. for conventional HY-TUF steel ferrite and pearlite formed after cooling with the rates 0.1...0.3 °C/s.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 265)

Pages:

717-722

Citation:

Online since:

September 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M.V. Maisuradze, Yu.V. Yudin, M.A. Ryzhkov, Numerical Simulation of Pearlitic Transformation in Steel 45Kh5MF, Met. Sci. Heat Treat., 56 (2015) 512-516.

DOI: 10.1007/s11041-015-9791-8

Google Scholar

[2] M.V. Maisuradze, Yu.V. Yudin, M.A. Ryzhkov, Investigation and Development of Spray Cooling Device for Heat Treatment of Large Steel Forgings, Mater. Perform. Char., 3 (2014) 449-462.

DOI: 10.1520/mpc20130103

Google Scholar

[3] A. Medvedeva, J. Bergström, S. Gunnarsson, P. Krakhmalev, L.G. Nordh, Influence of nickel content on machinability of a hot-work tool steel in prehardened condition, Mater. Design, 32 (2011) 706-715.

DOI: 10.1016/j.matdes.2010.07.037

Google Scholar

[4] A.N. Galkin, N.A. Zyuban, D.V. Rutskii, Study of Nonmetallic Inclusion Inhomogeneity and Distribution in a Steel 38KhN3MFA Ingot Cast with a Head Section Cooler, Metallurgist, 58 (2015) 853-858.

DOI: 10.1007/s11015-015-0007-7

Google Scholar

[5] Nickel alloy steels data book, Nickel alloy steels for heavy forgings, New-York, The international Nickel Company Inc., (1967).

Google Scholar

[6] W. Sha, Z. Chen, X.X.X. Geriletu, J.S. Lee, S. Malinov, E.A. Wilson, Tensile and impact properties of low nickel maraging steel, Mater. Sci. Eng. A, 587 (2013) 301-303.

DOI: 10.1016/j.msea.2013.08.076

Google Scholar

[7] D.E. Schmid, R.D. Knutsen, Reducing the nickel content in metastable austenitic stainless steel, INFACON 6, Proceedings of the First International Chromium Steel and Alloys Congress, 2 (1992) 151-157.

Google Scholar

[8] M. Sibanda, S.L. Vismer, R.D. Knutsen, Consideration of reduced nickel containing austenitic stainless steels for forming applications, Mater. Letters, 21 (1994) 203-207.

DOI: 10.1016/0167-577x(94)90219-4

Google Scholar

[9] J. G. Speer, E. De Moor, A. J. Clarke, Critical Assessment 7: Quenching and partitioning, Mater. Sci. Technol., 31 (2015) 3-9.

Google Scholar

[10] Y. Toji, G. Miyamoto, D. Raabe, Carbon partitioning during quenching and partitioning heat treatment accompanied by carbide precipitation, Acta Mater., 86 (2015) 137-147.

DOI: 10.1016/j.actamat.2014.11.049

Google Scholar

[11] J. Tobata, K. -L. Ngo-Huynh, N. Nakada, T. Tsuchiyama, S. Takaki, Role of Silicon in Quenching and Partitioning Treatment of Low-carbon Martensitic Stainless Steel, ISIJ Int. 52 (2012) 1377-1382.

DOI: 10.2355/isijinternational.52.1377

Google Scholar

[12] H.K.D.H. Bhadeshia, Thermodynamic analysis of isothermal transformation diagrams, Met. Sci., 16 (1982) 159-165.

Google Scholar

[13] T.A. Kop, J. Sietsma, S. Van Der Zwaag, Dilatometric analysis of phase transformations in hypo-eutectoid steels, Mater. Sci., 36 (2001) 519-526.

DOI: 10.1023/a:1004805402404

Google Scholar

[14] M.A. Ryzhkov, A.A. Popov, Methodological aspects of plotting of thermokinetic diagrams of transformation of supercooled austenite in low-alloy steels, Met. Sci. Heat Treat., 52 (2011) 612-616.

DOI: 10.1007/s11041-011-9329-7

Google Scholar

[15] J.G. Speer, D.V. Edmonds, F.C. Rizzo, D.K. Matlock, Partitioning of carbon from supersaturated plates of ferrite, with application to steel processing and fundamentals of the bainite transformation, Curr. Opin. Solid State Mater. Sci., 8 (2004).

DOI: 10.1016/j.cossms.2004.09.003

Google Scholar

[16] D.P. Koistinen, R.E. Marburger, A general equation prescribing the extent of the austenite-martensite transformation in pure iron-carbon alloys and plain carbon steels, Acta Metal, 7 (1959) 59-60.

DOI: 10.1016/0001-6160(59)90170-1

Google Scholar

[17] Y. Li, M. Xu, Y. Jin, H. Lu, Finite-element Simulation of Low-alloy High Strength Steel Welding Incorporating Improved Martensite Transformation Kinetics and Recrystalization Annealing, ISIJ Int. 55 (2015) 1448-1453.

DOI: 10.2355/isijinternational.55.1448

Google Scholar

[18] K.W. Andrews, Empirical formulae for the calculation of some transformation temperatures, J. Iron Steel Inst, 203 (1965) 721-727.

Google Scholar

[19] F.H. Akbary, J. Sietsma, G. Miyamoto, T. Furuhara, M.J. Santofimia, Interaction of carbon partitioning, carbide precipitation and bainite formation during the Q&P process in a low C steel, Acta Mater., 104 (2016) 72-83.

DOI: 10.1016/j.actamat.2015.11.032

Google Scholar

[20] H. Jirkova, L. Kucerova, B. Masek, The Effect of Chromium on Microstructure Development During Q-P Process, Mat. Today: Proc. 2S (2015) S627–S630.

Google Scholar