[1]
M.V. Maisuradze, Yu.V. Yudin, M.A. Ryzhkov, Numerical Simulation of Pearlitic Transformation in Steel 45Kh5MF, Met. Sci. Heat Treat., 56 (2015) 512-516.
DOI: 10.1007/s11041-015-9791-8
Google Scholar
[2]
M.V. Maisuradze, Yu.V. Yudin, M.A. Ryzhkov, Investigation and Development of Spray Cooling Device for Heat Treatment of Large Steel Forgings, Mater. Perform. Char., 3 (2014) 449-462.
DOI: 10.1520/mpc20130103
Google Scholar
[3]
A. Medvedeva, J. Bergström, S. Gunnarsson, P. Krakhmalev, L.G. Nordh, Influence of nickel content on machinability of a hot-work tool steel in prehardened condition, Mater. Design, 32 (2011) 706-715.
DOI: 10.1016/j.matdes.2010.07.037
Google Scholar
[4]
A.N. Galkin, N.A. Zyuban, D.V. Rutskii, Study of Nonmetallic Inclusion Inhomogeneity and Distribution in a Steel 38KhN3MFA Ingot Cast with a Head Section Cooler, Metallurgist, 58 (2015) 853-858.
DOI: 10.1007/s11015-015-0007-7
Google Scholar
[5]
Nickel alloy steels data book, Nickel alloy steels for heavy forgings, New-York, The international Nickel Company Inc., (1967).
Google Scholar
[6]
W. Sha, Z. Chen, X.X.X. Geriletu, J.S. Lee, S. Malinov, E.A. Wilson, Tensile and impact properties of low nickel maraging steel, Mater. Sci. Eng. A, 587 (2013) 301-303.
DOI: 10.1016/j.msea.2013.08.076
Google Scholar
[7]
D.E. Schmid, R.D. Knutsen, Reducing the nickel content in metastable austenitic stainless steel, INFACON 6, Proceedings of the First International Chromium Steel and Alloys Congress, 2 (1992) 151-157.
Google Scholar
[8]
M. Sibanda, S.L. Vismer, R.D. Knutsen, Consideration of reduced nickel containing austenitic stainless steels for forming applications, Mater. Letters, 21 (1994) 203-207.
DOI: 10.1016/0167-577x(94)90219-4
Google Scholar
[9]
J. G. Speer, E. De Moor, A. J. Clarke, Critical Assessment 7: Quenching and partitioning, Mater. Sci. Technol., 31 (2015) 3-9.
Google Scholar
[10]
Y. Toji, G. Miyamoto, D. Raabe, Carbon partitioning during quenching and partitioning heat treatment accompanied by carbide precipitation, Acta Mater., 86 (2015) 137-147.
DOI: 10.1016/j.actamat.2014.11.049
Google Scholar
[11]
J. Tobata, K. -L. Ngo-Huynh, N. Nakada, T. Tsuchiyama, S. Takaki, Role of Silicon in Quenching and Partitioning Treatment of Low-carbon Martensitic Stainless Steel, ISIJ Int. 52 (2012) 1377-1382.
DOI: 10.2355/isijinternational.52.1377
Google Scholar
[12]
H.K.D.H. Bhadeshia, Thermodynamic analysis of isothermal transformation diagrams, Met. Sci., 16 (1982) 159-165.
Google Scholar
[13]
T.A. Kop, J. Sietsma, S. Van Der Zwaag, Dilatometric analysis of phase transformations in hypo-eutectoid steels, Mater. Sci., 36 (2001) 519-526.
DOI: 10.1023/a:1004805402404
Google Scholar
[14]
M.A. Ryzhkov, A.A. Popov, Methodological aspects of plotting of thermokinetic diagrams of transformation of supercooled austenite in low-alloy steels, Met. Sci. Heat Treat., 52 (2011) 612-616.
DOI: 10.1007/s11041-011-9329-7
Google Scholar
[15]
J.G. Speer, D.V. Edmonds, F.C. Rizzo, D.K. Matlock, Partitioning of carbon from supersaturated plates of ferrite, with application to steel processing and fundamentals of the bainite transformation, Curr. Opin. Solid State Mater. Sci., 8 (2004).
DOI: 10.1016/j.cossms.2004.09.003
Google Scholar
[16]
D.P. Koistinen, R.E. Marburger, A general equation prescribing the extent of the austenite-martensite transformation in pure iron-carbon alloys and plain carbon steels, Acta Metal, 7 (1959) 59-60.
DOI: 10.1016/0001-6160(59)90170-1
Google Scholar
[17]
Y. Li, M. Xu, Y. Jin, H. Lu, Finite-element Simulation of Low-alloy High Strength Steel Welding Incorporating Improved Martensite Transformation Kinetics and Recrystalization Annealing, ISIJ Int. 55 (2015) 1448-1453.
DOI: 10.2355/isijinternational.55.1448
Google Scholar
[18]
K.W. Andrews, Empirical formulae for the calculation of some transformation temperatures, J. Iron Steel Inst, 203 (1965) 721-727.
Google Scholar
[19]
F.H. Akbary, J. Sietsma, G. Miyamoto, T. Furuhara, M.J. Santofimia, Interaction of carbon partitioning, carbide precipitation and bainite formation during the Q&P process in a low C steel, Acta Mater., 104 (2016) 72-83.
DOI: 10.1016/j.actamat.2015.11.032
Google Scholar
[20]
H. Jirkova, L. Kucerova, B. Masek, The Effect of Chromium on Microstructure Development During Q-P Process, Mat. Today: Proc. 2S (2015) S627–S630.
Google Scholar