[1]
D.A. Gitelman, A.K. Olhovackij, Unwear operation of internal combustion engines, Technological recommendations, Cheljabinsk, (2015).
Google Scholar
[2]
N.K. Myshkin, M.I. Petrokovec, Friction, lubrication, wear, Physical bases and technical applications of tribology, Fizmatlit, Moscow, (2007).
Google Scholar
[3]
G. Ya. Gerasimov, Radiative methods in the nanotechnology, Eng. Phys., 84 (2011) 873-889.
Google Scholar
[4]
G. Li, X.H. Li, Z.J. Zhang, Preparation methods of copper nanomaterials, Progress in Chemistry, 23 (2011) 1644-1656.
Google Scholar
[5]
O.A. Petrii, Electrosynthesis of nanostructures and nanomaterials, Advances in Chemistry, 84 (2015) 159-193.
Google Scholar
[6]
J.L. Xu, J.D. Chen, S.H. Yang, Effect of pH on copper nanoparticle preparation by electrochemical method, Nonferrous Metals, 63 (2011) 86-89.
Google Scholar
[7]
Information on http: /docin. com/p-646898564. html.
Google Scholar
[8]
L.Y. Bai, F.L. Yuan, H.B. Zhang, H.C. Jin, J.L. Li, Preparation of Ni and Cu nanopowders by hydrogen plasma reduction, Electronic Components and Materials, 30 (2011) 44-47.
Google Scholar
[9]
C. Sulekh, K. Avdhesh, K.T. Praveen, Synthesis and characterization of copper nanoparticles by reducing agent, Saudi Chemical Society, (2014) 149-153.
Google Scholar
[10]
K. Ayesha, R. Audil, Y. Rafia, C. Ren, A chemical reduction approach to the synthesis of copper nanoparticles, Int Nano Lett, (2016) 21-26.
Google Scholar
[11]
O.E. Litmanovich, V.S. Tatarinov, A.A. Litmanovich, Cause of dependence of nanoparticle copper size from nature of the reducing agent when the obtaining sol in the solution of a cationic polyelectrolyte, High-molecular compounds, B 53 (2011).
DOI: 10.1134/s1560090411040051
Google Scholar
[12]
G.T. Orozmatova, A.S. Satyvaldiev, G.K. Nasirdinova, Preparation of stable solutions of copper nanoparticles in the presence of sodium dodecylsulfate, J Problems of Modern Science and Education, 48 (2016) 28-32.
Google Scholar
[13]
H.X. Wang, M. Wang, Z.H. Peng, L.P. Hu, Synthesis of nano-sized copper powder by non-aqueous solvent method, Inorganic Chemicals Industry, 43 (2011) 33-35.
Google Scholar
[14]
J. Wen, J. Li, Q.Y. Chen, Preparation of copper nanoparticles with liquid reduction method by sodium hypophosphite, Functional Materials, 42 (2011) 189-192.
Google Scholar
[15]
X. Su, J. Zhao, H. Bala, Y. Zhu, Y. Gao, S. Ma, Z. Wang, Fast Synthesis of Stable Cubic Copper Nanocages in the Aqueous Phase, Phys. Chem, 111 (2007) 14689-14693.
DOI: 10.1021/jp074550w
Google Scholar
[16]
A.D. Jennifer, L.C. bettye Maddux, J.E. Hutchison, Toward Greener Nanosynthesis, Chem. Rev, 107 (2007) 2228-2269.
DOI: 10.1021/cr050943k
Google Scholar
[17]
Q.L. Zhang, Z.M. Yang, B.J. Ding, Preparation of copper nanoparticles by chemical reduction using potassium borohydride, Nonferrous Metals, 18 (2008) 348-352.
Google Scholar
[18]
X.L. Wang, Y.L. Yin, G.N. Zhang, W.Y. Wang, K.K. Zhao, Study on Antiwear and Repairing Performances about Mass of Nano-Copper Lubricating Additives to 45 Steel, Physics Procedia, 50 (2013) 466-472.
DOI: 10.1016/j.phpro.2013.11.073
Google Scholar
[19]
A. Vadiraj, G. Manivasagam, K. Kamani, V. S. Sreenivasan. Effect of nano oil additive proportions on friction and wear performance of automotive materials, Tribology in Industry, 34 (2012) 3-10.
Google Scholar
[20]
A. Tamilvanan, K. Balamurugan, K. Ponappa, B.M. Kumar, Copper nanoparticles: Synthetic strategies, properties and multifunctional application, International Journal of Nanoscience, 13(2014) 1-22.
DOI: 10.1142/s0219581x14300016
Google Scholar
[21]
P. Juozas, R. Raimundas, P. Igoris, K. Raimondas, Tribological properties of lubricant additives of Fe, Cu, and Co nanoparticles, Tribology International, 60 (2013) 224-232.
DOI: 10.1016/j.triboint.2012.10.024
Google Scholar
[22]
H. Nguen, Identification of tribo-technical characteristics of nanoscale metal-plating additives, Rostov-na-Donu, (2015).
Google Scholar
[23]
L.V. Zolotuhina, O.K. Baturina, T.P. Purgina, I.V. Frishberg, Formation of a nanocrystalline structure on friction surfaces in the presence of nanopowders of copper alloys in a lubricant, Friction and lubrication in machines and mechanisms, (2007).
Google Scholar
[24]
D.A. Mirzaev, K. Yu. Okishev, K.D. Mirzaeva, Analytical solution of the problem of diffusional transformation under continuous cooling condition based on isothermal transformation diagram data, Materials Performance and Characterization, 2(1) (2013).
DOI: 10.1520/mpc20120023
Google Scholar
[25]
A.N. Dildin, I.V. Chumanov, V.I. Chumanov, V.E. Eremyashev, E.A. Trofimov, A.A. Kirsanova, Liquid-phase reduction of steelmaking wastes, Metallurgist. 59 (2016) 1024-1029.
DOI: 10.1007/s11015-016-0210-1
Google Scholar
[26]
E.A. Avchinnikova, S.A. Vorobeva, Synthesis and properties of copper nanoparticles stabilized by polyethylene glycol, Vestnik BGU, 2 (2013) 12-16.
Google Scholar
[27]
R. Chatterjee, V. Sharma, S. Mukherjee, S. Kumar, Environmental impact of vegetable oil-based bio-diesel by life cycle assessment for sustainable cleaner production, Energy Technology and Policy, 11(1) (2015) 13-35.
DOI: 10.1504/ijetp.2015.069087
Google Scholar