Use of the Superplasticity Phenomenon of Steel for "Internal" Magnetic Correcting a Product

Article Preview

Abstract:

The results of the course of martensite transformation in steel under the action of the magnetic field are presented. These results indicate that the formation of stress-assisted martensite in the temperature interval Md-Ms (where superplasticity was observed) is possible. It was found that during hardening of steel products in magnetic field, martensite can be formed not only below Ms, but higher than this point (in the temperature range). The significant structural transformations and steel properties improvement under thermal treatment in a magnetic field depend on the catalytic effect of a field on the transformation development. This effect occurs when the initial phase is paramagnetic, and the product of the transformation is ferromagnetic. Stress-assisted martensite and cooling-induced martensite are formed in the superplastic temperature range of the austenite. This makes it possible for the undeformation hardening of steel products in a magnetic field. The undeformation hardening is caused by a magnetic field holding the product and the formation of martensitic structure oriented predominantly towards the magnetic field vector.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 265)

Pages:

745-749

Citation:

Online since:

September 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A.P. Gulyaev, Condition of pretransformation in alloys of iron, Met. Sci. Heat Treat. 33 (1991) 423-427.

DOI: 10.1007/bf00775373

Google Scholar

[2] A.P. Gulyaev, L.M. Sarmanova, High-temperature plasticity of carbon steels, Met. Sci. Heat Treat. 14 (1972) 329-332.

DOI: 10.1007/bf00657023

Google Scholar

[3] A.P. Gulyaev, L.M. Sarmanova, Technological ductility of high-speed steels, Met. Sci. Heat Treat. 11 (1969) 511-516.

DOI: 10.1007/bf00654269

Google Scholar

[4] T.V. Svistunova, N.A. Sorokina, A.P. Shlyamnev, Scientific contribution of A.P. Gulyaev to the physical metallurgy of steels and alloys with special properties, Met. Sci. Heat Treat. 50 (2008) 522-525.

DOI: 10.1007/s11041-009-9096-x

Google Scholar

[5] V.G. Vorob'ev, Deformacija stali pri termicheskoj obrabotke i metody ee preduprezhdenija, in: Ju.M. Lahtin, A.G. Rahshtadt (Eds. ) Termicheskaja obrabotka v mashinostroenii, Mashinostroenie, Мoscow, 1980, pp.214-240.

Google Scholar

[6] V.G. Vorob'ev, Heat treatment problems in the precision machine-tool industry, Met. Sci. Heat Treat. 11 (1969) 406-412.

DOI: 10.1007/bf00648622

Google Scholar

[7] O.G. Sokolov, K.B. Kacov, G.V. Karpenko, Sverhplastichnost' i korrozionno-mehanicheskaja prochnost' dvuhfaznyh zhelezomargancevyh splavov, Naukova Dumka, Kiev, 1977, pp.24-255.

Google Scholar

[8] T.F. Volynova, A.P. Gulyaev, Anomalies of plasticity and polymorphic transformations, Met. Sci. Heat. Treat. 23 (1981) 178-181.

DOI: 10.1007/bf00769610

Google Scholar

[9] T.F. Volynova, V.M. Mnasin, I.B. Sidorova, O.G. Sokolov, Effect of sulfur and phosphorus on the mechanical properties and nature of failure for steel G20S2, Strength Mater. 19 (1987) 1534-1540.

DOI: 10.1007/bf01523039

Google Scholar

[10] S.B. Rozhkova, M.A. Filippov, O.G. Sokolov et al., The influence of preliminary treatment on the phase composition and mechanical properties of type G20 steels, Mater. Sci. 15 (1980) 636-640.

DOI: 10.1007/bf00722754

Google Scholar

[11] V.N. Pustovoit, Yu.V. Dolgachev, Zarozhdenie martensita v uslovijah sverhplastichnosti austenita i vozdejstvija vneshnego magnitnogo polja, Izvestija Volgogradskogo Gosudarstvennogo Tehnicheskogo Universiteta 2 (2016) 114-120.

Google Scholar

[12] I.I. Novikov, V.K. Tailor, Sverhplastichnost' splavov s ul'tramelkim zernom, Metallurgy, Мoscow, (1981).

Google Scholar

[13] O.A. Yakovtseva, A.V. Mikhailovskaya, A.D. Kotov et al., Effect of alloying on superplasticity of two-phase brasses, Phys. Metals. Metallogr. 117 (2016) 742-748.

DOI: 10.1134/s0031918x16070188

Google Scholar

[14] M.A. Tsepin, J. Syn, N.L. Lisunets et al., Rheological Model of Flow of a Material with a Variable Structure under Superplastic Deformation, Journal of Engineering Physics and Thermophysics 76 (2003) 627-631.

DOI: 10.1023/a:1024733317171

Google Scholar

[15] A.A. Markin, Thermomechanics of elastoplastic and superplastic deformation of metals, J. Appl. Mech. Tech. Phys. 40 (1999) 922-929.

DOI: 10.1007/bf02468478

Google Scholar

[16] M. Shirooyeh, R.P. Dillon, S.S. Sosa et al., Superplasticity and superplastic-like flow in cubic zirconia with silica, J. Mater. Sci. 50 (2015) 3716-3726.

DOI: 10.1007/s10853-015-8932-1

Google Scholar

[17] V.N. Pustovoit, Yu.V. Dolgachev, Osobennosti protekanija martensitnogo prevrashhenija v stali pri zakalke v postojannom magnitnom pole, Vestnik Donskogo Gosudarstvennogo Tehnicheskogo Universiteta 4 (2007) 459-465.

Google Scholar

[18] V.N. Pustovoit, Yu.V. Dolgachev, V.M. Rozhkova, Jenergeticheskie osobennosti obrazovanija zarodyshej martensita i kinetika gamma-al'fa perehoda pri dejstvii vneshnego magnitnogo polja, Izvestija Volgogradskogo Gosudarstvennogo Tehnicheskogo Universiteta 5 (2015).

Google Scholar

[19] V.N. Pustovoit, Yu.V. Dolgachev, L.A. Zaharova, Izmenenija v kinetike fazovyh perehodov pod dejstviem magnitnogo polja, Novaja nauka: teoreticheskij i prakticheskij vzgljad 10-2 (2016) 130-136.

Google Scholar

[20] V.N. Pustovoit, Yu.V. Dolgachev, V.V. Fedosov, Izmenenija svojstv i fazovogo sostava stalej posle zakalki v magnitnom pole, Novaja nauka: ot idei k rezul'tatu 4-1 (2016) 95-98.

Google Scholar

[21] V.N. Pustovoit, Yu.V. Dolgachev, Yu.A. Kornilov, O. Yu. Sorochkina, Neustojchivost' kristallicheskoj reshetki pered martensitnym prevrashheniem i vlijanie vneshnego magnitnogo polja v jetih uslovijah, Vestnik Donskogo Gosudarstvennogo Tehnicheskogo Universiteta 2 (2009).

Google Scholar

[22] Ya.D. Vishnyakov, G.S. Fainshtein, Vlijanie izmenenija sostava i temperatury na jenergiju defektov upakovki, Izv. Vysh. Ucheb. Zaved. Chern. Metall. 9 (1972) 116-119.

Google Scholar

[23] A. Das, Revisiting Stacking Fault Energy of Steels, Metall. and Mat. Trans. A 47 (2016) 748-768.

DOI: 10.1007/s11661-015-3266-9

Google Scholar

[24] J. Wan, S. Chen, Z. Xu, The influence of temperature on stacking fault energy in Fe-based alloys, Sci. China Ser. E-Technol. Sci. 44 (2001) 345-352.

DOI: 10.1007/bf02916685

Google Scholar