Research into the Structure of Aluminum Matrix Composite АK12+2.38%Cu+0.06%SiC with a Scanning Probe Microscope

Article Preview

Abstract:

The paper provides an overview of the results obtained when using the method of scanning probe microscopy for exploring surfaces of aluminum matrix composite (АC12+2.38%Cu+0.06%SiC) and modified aluminum alloy (АL2) samples with nanohardness measuring device “NanoScan-3D”. The authors describe a calibration process of the device, which was implemented via precise positioning the optical axis of nanohardness measuring device “NanoScan-3D” with the indenter axis. The paper highlights that the structure images of materials under study obtained in the process of optical metallographic tests are similar to results of scanning probe microscopy. The second major finding is that the modules of elasticity of phase components in materials АC12+2.38%Cu+0.06%SiC and АL2 can be appropriately measured using the method of scanning probe microscopy with nanohardness measuring device “NanoScan-3D”. The paper identifies that modules of elasticity of alpha solid solution grains, eutectic and released silicon are comparable in aluminum matrix composite АC12+2.38%Cu+0.06%SiC and modified aluminum alloy АL2. The authors also point out the convergence of modules of elasticity in the zones with embedded particles of silicon carbide with the data given in literature. The paper reports practical approval of the procedure for detecting the strengthening particles of silicon carbide in aluminum matrix composite АC12+2.38%Cu+0.06%SiC using the method of scanning probe microscopy with device “NanoScan-3D”.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 265)

Pages:

723-727

Citation:

Online since:

September 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] R.S. Mikheev, T.A. Chernyshova, Aluminum matrix composites with carbide strengthening for solution of new technical problems, RFBR, Moscow, (2013).

Google Scholar

[2] O.V. Bashkov, T.I. Bashkova, R.V. Romashko, A.A. Popkova, Design of integrated diagram of aluminium alloys fatigue using acoustic emission method, Tsvetnye Metally, 4 (2016) 58-64.

DOI: 10.17580/tsm.2016.04.10

Google Scholar

[3] N.A. Belov, A.N. Alabin, A.V. Sannikov, N. Yu. Tabachkova, V.B. Deev, Effect of Annealing on the Structure and Hardening of Heat-Resistant Castable Aluminum Alloy AN2ZhMts, Metal Science and Heat Treatment, 56 (2014) 353-358.

DOI: 10.1007/s11041-014-9761-6

Google Scholar

[4] S. Konovalov, K. Alsaraeva, V. Gromov, Y. Ivanov, O. Semina, The influence of electron beam treatment on Al-Si alloy structure destroyed at high-cycle fatigue, Key Engineering Materials, 675-676 (2016) 655-659.

DOI: 10.4028/www.scientific.net/kem.675-676.655

Google Scholar

[5] Y. Ivanov, K. Alsaraeva, V. Gromov, S. Konovalov, O. Semina, Evolution of Al-19. 4Si alloy surface structure after electron beam treatment and high cycle fatigue, Materials Science and Technology (United Kingdom), 31 (2015) 1523-1529.

DOI: 10.1179/1743284714y.0000000727

Google Scholar

[6] H. Abderrazak, E.S. Hmida, Silicon Carbide: Synthesis and Properties, Properties and Applications of Silicon Carbide, Published by InTech, Rijeka, 2011, 361-388.

DOI: 10.5772/15736

Google Scholar

[7] G. Pensl, W.J. Choyke, Electrical and optical characterization of SiC, Physics, B 185 (1993) 264-283.

Google Scholar

[8] J.G. Kushmerick, P.S. Weiss, Scanning Probe Microscopes, Encyclopedia of Spectroscopy and Spectrometry (Third Edition), Academic Press, London, (2017).

DOI: 10.1016/b978-0-12-803224-4.00274-0

Google Scholar

[9] C.J. Roberts, M.C. Davies, S.J. B Tendler, P.M. Williams, Scanning Probe Microscopy, Applications, Encyclopedia of Spectroscopy and Spectrometry (Third Edition) Academic Press, London, (2017).

DOI: 10.1016/b978-0-12-803224-4.00275-2

Google Scholar

[10] Sang Wook Lee, Mechanical properties of suspended individual carbon nanotube studied by atomic force microscope, Synthetic Metals, 216 (2016) 88-92.

DOI: 10.1016/j.synthmet.2015.09.014

Google Scholar

[11] C.A. Clifford, N. Sano, P. Doyle, M.P. Seah, Nano-mechanical measurements of hair as an example of micro-fibre analysis using atomic force microscopy nano-indentation, Ultramicroscopy, 114 (2012) 38-45.

DOI: 10.1016/j.ultramic.2012.01.006

Google Scholar

[12] Y. Li, Y.F. Cheng, Effect of surface finishing on early-stage corrosion of a carbon steel studied by electrochemical and atomic force microscope characterizations, Applied Surface Science, 366 (2016) 95-103.

DOI: 10.1016/j.apsusc.2016.01.081

Google Scholar

[13] S. Ogata, N. Kobayashi, T. Kitagawa, S. Shima, A. Fukunaga, C. Takatoh, T. Fukuma, Nanoscale corrosion behavior of polycrystalline copper fine wires in dilute NaCl solution investigated by in-situ atomic force microscopy, Corrosion Science, 105 (2016).

DOI: 10.1016/j.corsci.2016.01.015

Google Scholar

[14] J. Hopf, E.M. Pierce, Topography and mechanical property mapping of International Simple Glass surfaces with atomic force microscopy, Procedia Materials Science, 7 (2014) 216-222.

DOI: 10.1016/j.mspro.2014.10.028

Google Scholar

[15] M.S. Silva, S.T. Souza, D.V. Sampaio, J.C.A. Santos, E.J.S. Fonseca, R.S. Silva, Conductive atomic force microscopy characterization of PTCR-BaTiO3 laser-sintered ceramics, Journal of the European Ceramic Society, 36 (2016) 1385-1389.

DOI: 10.1016/j.jeurceramsoc.2016.01.012

Google Scholar

[16] D. Amin-Shahidi, D. Trumper, Macro-scale atomic force microscope: An experimental platform for teaching precision mechatronics, Mechatronics, 31 (2015) 234-242.

DOI: 10.1016/j.mechatronics.2015.08.007

Google Scholar

[17] D.B. Haviland, Quantitative force microscopy from a dynamic point of view, Current Opinion in Colloid & Interface Science, 27 (2016) 74-81.

DOI: 10.1016/j.cocis.2016.10.002

Google Scholar

[18] A.S. Useinov, Measuring Yung modulus of super hard materials with scanning probe microscope NanoScan, Instruments and Technique of Experiments, 6 (2003) 1-5.

Google Scholar

[19] K.O. Kese, Z.C. Li, B. Bergman, Method to account for true contact area in soda-lime glass during nano-indentation with the Berkovich tip, Materials Science and Engineering, (2005) 1-8.

DOI: 10.1016/j.msea.2005.06.006

Google Scholar

[20] J.L. Loubet, L.M. Georges, G. Meille, P.J. Blau, B.R. Lawn, Vickers indentation curves of elasto-plastic materials, ASTM, (1986) 72-89.

DOI: 10.1520/stp32952s

Google Scholar

[21] S.V. Hainsworth, H.W. Chandler, T.F. Page, Analysis of nanoindentation load-displacement loading curves, J. Mater. Res., 11 (1996) 1987-(1995).

DOI: 10.1557/jmr.1996.0250

Google Scholar

[22] Y. -T. Cheng, C. -M. Cheng, Further analysis of indentation loading curves: Effects of tip rounding on mechanical property measurements, J. Mater. Res., 13 (1998) 1059-1064.

DOI: 10.1557/jmr.1998.0147

Google Scholar

[23] M. Sakai, Energy principle of the indentation-induced inelastic surface deformation and hardness of brittle materials, Acta Metal Mater., 41 (1993) 1751-1758.

DOI: 10.1016/0956-7151(93)90194-w

Google Scholar

[24] J. Gubisza, A. Juhasz, J. Lendvai, A new method for hardness determination from depth sensing indentation tests, J. Mater. Res., 11 (1996) 2964-2967.

DOI: 10.1557/jmr.1996.0376

Google Scholar

[25] Y. -T. Cheng, C. -M. Cheng, Relationships between hardness, elastic modulus, and the work of indentation, Appl. Phys. Lett., 5 (1998) 614-615.

DOI: 10.1063/1.121873

Google Scholar

[26] W.C. Oliver, G.M. Pharr, An improved technique for determining hardness and elastic module y using load and displacement sensing indentation experiments, J. Mater. Res., 6 (1992) 1564-1583.

DOI: 10.1557/jmr.1992.1564

Google Scholar

[27] Yu.S. Karabasov, New Materials, MISIS, Moscow, (2002).

Google Scholar