[1]
R.S. Mikheev, T.A. Chernyshova, Aluminum matrix composites with carbide strengthening for solution of new technical problems, RFBR, Moscow, (2013).
Google Scholar
[2]
O.V. Bashkov, T.I. Bashkova, R.V. Romashko, A.A. Popkova, Design of integrated diagram of aluminium alloys fatigue using acoustic emission method, Tsvetnye Metally, 4 (2016) 58-64.
DOI: 10.17580/tsm.2016.04.10
Google Scholar
[3]
N.A. Belov, A.N. Alabin, A.V. Sannikov, N. Yu. Tabachkova, V.B. Deev, Effect of Annealing on the Structure and Hardening of Heat-Resistant Castable Aluminum Alloy AN2ZhMts, Metal Science and Heat Treatment, 56 (2014) 353-358.
DOI: 10.1007/s11041-014-9761-6
Google Scholar
[4]
S. Konovalov, K. Alsaraeva, V. Gromov, Y. Ivanov, O. Semina, The influence of electron beam treatment on Al-Si alloy structure destroyed at high-cycle fatigue, Key Engineering Materials, 675-676 (2016) 655-659.
DOI: 10.4028/www.scientific.net/kem.675-676.655
Google Scholar
[5]
Y. Ivanov, K. Alsaraeva, V. Gromov, S. Konovalov, O. Semina, Evolution of Al-19. 4Si alloy surface structure after electron beam treatment and high cycle fatigue, Materials Science and Technology (United Kingdom), 31 (2015) 1523-1529.
DOI: 10.1179/1743284714y.0000000727
Google Scholar
[6]
H. Abderrazak, E.S. Hmida, Silicon Carbide: Synthesis and Properties, Properties and Applications of Silicon Carbide, Published by InTech, Rijeka, 2011, 361-388.
DOI: 10.5772/15736
Google Scholar
[7]
G. Pensl, W.J. Choyke, Electrical and optical characterization of SiC, Physics, B 185 (1993) 264-283.
Google Scholar
[8]
J.G. Kushmerick, P.S. Weiss, Scanning Probe Microscopes, Encyclopedia of Spectroscopy and Spectrometry (Third Edition), Academic Press, London, (2017).
DOI: 10.1016/b978-0-12-803224-4.00274-0
Google Scholar
[9]
C.J. Roberts, M.C. Davies, S.J. B Tendler, P.M. Williams, Scanning Probe Microscopy, Applications, Encyclopedia of Spectroscopy and Spectrometry (Third Edition) Academic Press, London, (2017).
DOI: 10.1016/b978-0-12-803224-4.00275-2
Google Scholar
[10]
Sang Wook Lee, Mechanical properties of suspended individual carbon nanotube studied by atomic force microscope, Synthetic Metals, 216 (2016) 88-92.
DOI: 10.1016/j.synthmet.2015.09.014
Google Scholar
[11]
C.A. Clifford, N. Sano, P. Doyle, M.P. Seah, Nano-mechanical measurements of hair as an example of micro-fibre analysis using atomic force microscopy nano-indentation, Ultramicroscopy, 114 (2012) 38-45.
DOI: 10.1016/j.ultramic.2012.01.006
Google Scholar
[12]
Y. Li, Y.F. Cheng, Effect of surface finishing on early-stage corrosion of a carbon steel studied by electrochemical and atomic force microscope characterizations, Applied Surface Science, 366 (2016) 95-103.
DOI: 10.1016/j.apsusc.2016.01.081
Google Scholar
[13]
S. Ogata, N. Kobayashi, T. Kitagawa, S. Shima, A. Fukunaga, C. Takatoh, T. Fukuma, Nanoscale corrosion behavior of polycrystalline copper fine wires in dilute NaCl solution investigated by in-situ atomic force microscopy, Corrosion Science, 105 (2016).
DOI: 10.1016/j.corsci.2016.01.015
Google Scholar
[14]
J. Hopf, E.M. Pierce, Topography and mechanical property mapping of International Simple Glass surfaces with atomic force microscopy, Procedia Materials Science, 7 (2014) 216-222.
DOI: 10.1016/j.mspro.2014.10.028
Google Scholar
[15]
M.S. Silva, S.T. Souza, D.V. Sampaio, J.C.A. Santos, E.J.S. Fonseca, R.S. Silva, Conductive atomic force microscopy characterization of PTCR-BaTiO3 laser-sintered ceramics, Journal of the European Ceramic Society, 36 (2016) 1385-1389.
DOI: 10.1016/j.jeurceramsoc.2016.01.012
Google Scholar
[16]
D. Amin-Shahidi, D. Trumper, Macro-scale atomic force microscope: An experimental platform for teaching precision mechatronics, Mechatronics, 31 (2015) 234-242.
DOI: 10.1016/j.mechatronics.2015.08.007
Google Scholar
[17]
D.B. Haviland, Quantitative force microscopy from a dynamic point of view, Current Opinion in Colloid & Interface Science, 27 (2016) 74-81.
DOI: 10.1016/j.cocis.2016.10.002
Google Scholar
[18]
A.S. Useinov, Measuring Yung modulus of super hard materials with scanning probe microscope NanoScan, Instruments and Technique of Experiments, 6 (2003) 1-5.
Google Scholar
[19]
K.O. Kese, Z.C. Li, B. Bergman, Method to account for true contact area in soda-lime glass during nano-indentation with the Berkovich tip, Materials Science and Engineering, (2005) 1-8.
DOI: 10.1016/j.msea.2005.06.006
Google Scholar
[20]
J.L. Loubet, L.M. Georges, G. Meille, P.J. Blau, B.R. Lawn, Vickers indentation curves of elasto-plastic materials, ASTM, (1986) 72-89.
DOI: 10.1520/stp32952s
Google Scholar
[21]
S.V. Hainsworth, H.W. Chandler, T.F. Page, Analysis of nanoindentation load-displacement loading curves, J. Mater. Res., 11 (1996) 1987-(1995).
DOI: 10.1557/jmr.1996.0250
Google Scholar
[22]
Y. -T. Cheng, C. -M. Cheng, Further analysis of indentation loading curves: Effects of tip rounding on mechanical property measurements, J. Mater. Res., 13 (1998) 1059-1064.
DOI: 10.1557/jmr.1998.0147
Google Scholar
[23]
M. Sakai, Energy principle of the indentation-induced inelastic surface deformation and hardness of brittle materials, Acta Metal Mater., 41 (1993) 1751-1758.
DOI: 10.1016/0956-7151(93)90194-w
Google Scholar
[24]
J. Gubisza, A. Juhasz, J. Lendvai, A new method for hardness determination from depth sensing indentation tests, J. Mater. Res., 11 (1996) 2964-2967.
DOI: 10.1557/jmr.1996.0376
Google Scholar
[25]
Y. -T. Cheng, C. -M. Cheng, Relationships between hardness, elastic modulus, and the work of indentation, Appl. Phys. Lett., 5 (1998) 614-615.
DOI: 10.1063/1.121873
Google Scholar
[26]
W.C. Oliver, G.M. Pharr, An improved technique for determining hardness and elastic module y using load and displacement sensing indentation experiments, J. Mater. Res., 6 (1992) 1564-1583.
DOI: 10.1557/jmr.1992.1564
Google Scholar
[27]
Yu.S. Karabasov, New Materials, MISIS, Moscow, (2002).
Google Scholar