Vacuum Arc Deposition of Carbon and Carbon-Based Coatings

Article Preview

Abstract:

The paper describes the main features of the vacuum arc deposition of carbon and carbon-based coatings. This type of films and coatings is very interesting for the various areas of science and technology due to its unique properties. Pulverization of carbon in the vacuum arc discharge allows achieving the formation of carbon films and coatings of various structural modifications. The character of the particles deposition from the plasma flow depends on their energy and defines adhesion of the formed coating to the substrate, and also its structure, composition and existence of the formed defects.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 265)

Pages:

750-754

Citation:

Online since:

September 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] D.K. Kostrin, A.A. Lisenkov, Synthesis of Transition Metals Carbide Compounds in the Vacuum Arc Discharge Plasma, Materials Science Forum, 870 (2016) 371-376.

DOI: 10.4028/www.scientific.net/msf.870.371

Google Scholar

[2] E.Z. Khamdohov, R. Sh. Teshev, Z.M. Khamdohov, A.Z. Khamdohov, Z.H. Kalajokov, H.H. Kalajokov, Production of Carbon Films by the Electric Arc Sputtering of Graphite in a Magnetic Field, Journal of Surface Investigation, X-ray, Synchrotron and Neutron Techniques, 6 (2014).

DOI: 10.1134/s1027451014060317

Google Scholar

[3] M. Horikoshi, A. Hirata, Vacuum Arc Deposition of Homogeneous Amorphous Carbon Films at High Growth Rates, New Diamond and Frontier Carbon Technology, 5 (2006) 267-277.

Google Scholar

[4] P. Delhaes, Graphite and Precursors, Gordon and Breach Science Publishers, Amsterdam, (2001).

Google Scholar

[5] Yu.A. Bystrov, N.Z. Vetrov, A.A. Lisenkov, D.K. Kostrin, Technological Capabilities of Vacuum Arc Plasma Sources, Plasmochemical Synthesis of Nitride Compounds, Vakuum in Forschung und Praxis, 5 (2014) 19-23.

DOI: 10.1002/vipr.201400563

Google Scholar

[6] D.K. Kostrin, A.A. Lisenkov, Surface Modification by Vacuum Arc Plasma Source, Materials Science Forum, 843 (2016) 278-283.

DOI: 10.4028/www.scientific.net/msf.843.278

Google Scholar

[7] M.L. Vinogradov, D.K. Kostrin, V.V. Smelova, S.A. Trifonov, A.A. Lisenkov, Technology for Producing New Wear-Resistant Coatings in the Plasma of a Vacuum-Arc Discharge, Proceedings of the 2016 IEEE North West Russia Section Young Researchers in Electrical and Electronic Engineering Conference, (2016).

DOI: 10.1109/eiconrusnw.2016.7448284

Google Scholar

[8] Yu.A. Bystrov, D.K. Kostrin, A.A. Lisenkov, N.Z. Vetrov, Cathode Spots of Vacuum Arc Discharges: Motion Control on the Working Surface, Vakuum in Forschung und Praxis, 2 (2015) 22-25.

DOI: 10.1002/vipr.201500578

Google Scholar

[9] I.I. Beilis, Application of Vacuum Arc Cathode Spot Model to Graphite Cathode, IEEE Transactions on Plasma Science, 4 (1999) 821-826.

DOI: 10.1109/27.782245

Google Scholar

[10] D.K. Kostrin, A.A. Uhov, A.A. Lisenkov, Optical spectrometry in the diagnosis of ion-plasma processes: Control of the coating deposition process and thickness, Vakuum in Forschung und Praxis, 3 (2016) 34-37.

DOI: 10.1002/vipr.201600608

Google Scholar

[11] D.K. Kostrin, A.A. Lisenkov, A.A. Uhov, Spectrometric control of coatings deposition process, Journal of Physics: Conference Series, 735 (2016) 012055.

DOI: 10.1088/1742-6596/735/1/012055

Google Scholar

[12] Yu.A. Bystrov, N.Z. Vetrov, A.A. Lisenkov, Special aspects of structure formation of a multicomponent layer in vacuum-arc plasma, Technical Physics Letters, 10 (2013) 914-916.

DOI: 10.1134/s1063785013100155

Google Scholar