Method for Describing Fatigue Processes in Structural Materials

Article Preview

Abstract:

The article studies one of the methods for phenomenological description of fatigue processes in structurally-inhomogeneous structural materials. The initial statement about the interrelationship between the static and cyclic material properties is investigated using the complete stress-strain curves or diagrams method (CSSD). Based on the analysis of the mathematic modeling results, the interrelationship is predicted to exist between the highly-localized fatigue process in a structurally-inhomogeneous material and the degradation of a static CSSD for a macroscopic specimen. It is noted that the conditions under which the specimen fails in a testing machine are similar to the ones for the material in a construction. Then the results are given for the direct experimental testing of the model predictions, illustrated with the examples of cyclic degradation of several structural materials. The tests on multiple-cycle fatigued specimens reveal degradation of several mechanical properties. The justification for the selection of the available plasticity of a material as a parameter representative of the fatigue process is given. The authors describe a few examples of building one-parameter cyclic degradation models for steels and some prospects of using the complete strain-stress diagrams for various purposes.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 265)

Pages:

815-820

Citation:

Online since:

September 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] F.D. Bell, Jeksperimental'nye osnovy mehaniki deformiruemyh tverdyh tel. Ch. 2, Konechnye deformacii, Nauka, Moscow, (1984).

Google Scholar

[2] T. Ju. Jakovleva, Lokal'naja plasticheskaja deformacija i ustalost' metalla, Nauk. dumka, Kiev, (2003).

Google Scholar

[3] V.F. Terent'ev, Ustalostnaja prochnost' metallov i splavov, Intermet Inzhiniring, Moscow, (2002).

Google Scholar

[4] D.G. Gromakovsky, A.N. Malyarov, Y.P. Samarin, Modelling and Wear Calculation on Friction. Abstracts of Papers of the World Tribology Congress, Bookcraft Limited, Bath, UK, (1997).

Google Scholar

[5] V.E. Panin, T.F. Elsukova, G.V. Angelova, P.V. Kuznecov, Mehanizmy formirovanija fraktal'noj mezostruktury na poverhnosti polikristallov pri ciklicheskom nagruzhenii, FMM. 94(4) (2002) 79-88.

Google Scholar

[6] V.V. Struzhanov, V.I. Mironov, Deformacionnoe razuprochnenie materiala v jelementah konstrukcij, Izd-vo UrO RAN, Ekaterinburg, (1995).

Google Scholar

[7] V.I. Mironov, O.A. Lukashuk, A.V. Yakushev, G.G. Kozhushko, Cyclic degradation of material in vehicle components, Russian Engineering Research. 32(5-6) (2012) 417-422.

DOI: 10.3103/s1068798x12050139

Google Scholar

[8] V.I. Mironov, A.V. Kuznetsov, I.G. Emel'yanov, Consideration of cyclic degradation of the material and abnormality of the surface layer mechanical properties in calculating the life of a plate with an opening, Strength of Materials. 46(5) (2014).

DOI: 10.1007/s11223-014-9594-y

Google Scholar

[9] V.I. Mironov, V.V. Struzhanov, G.L. Krahmal'nik, Ob odnoj modeli plasticheskogo deformirovanija s razuprochneniem, Problemy mashinostroenija i nadezhnost' mashin. 5 (2002) 42-49.

Google Scholar

[10] V.I. Mironov, V.A. Andronov, A.V. Jakushev, V.B. Bambulevich, Ustrojstvo i sposob dlja ispytanija obrazcov materialov na rastjazhenie, (2005).

Google Scholar

[11] A.A. Lebedev, N.G. Chausov, Fenomenologicheskie osnovy ocenki treshhinostojkosti materialov po parametram padajushhih uchastkov diagramm deformacij, Problemy prochnosti. 2 (1983) 6-10.

Google Scholar

[12] V.I. Mironov, V.V. Struzhanov, A.V. Jakushev, Osobennosti ustalostnogo processa stali 35, Zavodskaja laboratorija. 70(6) (2004) 51-54.

Google Scholar