Investigation of Barium Hexaferrite BaFe12O19 Electro Physical Parameters Using Open-Ended Coaxial Probe Method

Article Preview

Abstract:

Barium hexaferrite BaFe12O19 single crystals hexagonal shaped and sizes of up to 5 mm were grown from barium borate flux. The electro physical parameters of grinded crystals were investigated following the open-ended methodology, using Speag DAK system. Thebtained Debye characteristic for permittivity confirmed the theoretical expectations. The presented results show the specific behavior of the target value in terms of causal models for metal powder materials.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 265)

Pages:

834-838

Citation:

Online since:

September 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J. Liu, Y. Zeng, Z. Su, M. Geiler, Y. Chen, V.G. Harris, Magnetic Properties of a Highly Textured Barium Hexa-Ferrite Quasi-Single Crystal and Its Application in Low-Field Biased Circulators, Journal of Electronic Materials, 45(10) (2016).

DOI: 10.1007/s11664-016-4699-7

Google Scholar

[2] S.S.S. Afghahi, M. Jafarian, M. Salehi, Y. Atassi, Improvement of the performance of microwave X band absorbers based on pure and doped Ba-hexaferrite, Journal of Magnetism and Magnetic Materials. 421 (2017) 340-348.

DOI: 10.1016/j.jmmm.2016.08.042

Google Scholar

[3] J. Singh, C. Singh, D. Kaur, S.B. Narang, R. Joshi, S.R. Mishra, R. Jotania, M. Ghimire, CC. Chauhan, Tunable microwave absorption in Co/Al substituted M-type Ba/Sr hexagonal ferrite, Materials and Design. 110 (2016) 749-761.

DOI: 10.1016/j.matdes.2016.08.049

Google Scholar

[4] A.S. Mikheykin, E.S. Zhukova, V.I. Torgashev, A.G. Razumnaya, Y.I. Yuzyuk, B.P. Gorshunov,  A.S. Prokhorov, A.E. Sashin, A.A. Bush, M. Dressel, Lattice anharmonicity and polar soft mode in ferrimagnetic M-type hexaferrite BaFe12O19 single crystal, European Physical Journal B. 87(10) (2014).

DOI: 10.1140/epjb/e2014-50329-4

Google Scholar

[5] M. Jazirehpour, M.H. Shams, Microwave Absorption Properties of Ba–M Hexaferrite with High Substitution Levels of Mg–Ti in X Band, Journal of Superconductivity and Novel Magnetism, (2016) 1-7.

DOI: 10.1007/s10948-016-3698-5

Google Scholar

[6] S.E. Rowley, Y. -S. Chai, S. -P. Shen, Y. Sun, A.T. Jones, B.E. Watts, J.F. Scott, Uniaxial ferroelectric quantum criticality in multiferroic hexaferrites BaFe12O19 and SrFe12O19, Scientific Reports. 6 (2016).

DOI: 10.1038/srep25724

Google Scholar

[7] V.A. Turchenko, A.V. Trukhanov, I.A. Bobrikov, S.V. Trukhanov, A.M. Balagurov, Investigation of the Crystal and Magnetic Structures of BaFe12 ‒ xAlxO19 Solid Solutions (x = 0. 1‒1. 2), Crystallography Reports. 60(5) (2015) 629-635.

DOI: 10.1134/s1063774515030220

Google Scholar

[8] H. Lou, J. Wang, Z. Zhao, X. Cai, Y. Hou, Effect of heat treatment on the structure of M-Type BaFe12O 19 hollow ceramic microspheres prepared by self-reactive quenching technology and microwave absorption properties, Journal of Materials Science. 48(16) (2013).

DOI: 10.1007/s10853-013-7362-1

Google Scholar

[9] C. Wu, Z. Yu, Y. Yang, K. Sun, R. Guo, X. Jiang, Z, Lan, Brillouin function characteristics for La-Co substituted barium hexaferrites, Journal of Applied Physics, 118(10) (2015).

DOI: 10.1063/1.4930066

Google Scholar

[10] M.H. Shams, A.S.H. Rozatian, M.H. Yousefi, The effect of Mn-Co-Ti dopants on the magnetic properties, Complex permittivity, permeability, and microwave absorbing characteristics of barium hexaferrite, Journal of Optoelectronics and Advanced Materials. 17(5-6) (2015).

Google Scholar

[11] R. Topkaya, I. Auwal, A. Baykal, Effect of temperature on magnetic properties of BaYxFe12 −xO19 hexaferrites, Ceramics International, 42(14) (2016) 16296-16302.

DOI: 10.1016/j.ceramint.2016.07.178

Google Scholar

[12] A.M. Alsmadi, I. Bsoul, S.H. Mahmood, G. Alnawashi, F.M. Al-Dweri, Y. Maswadeh, U. Welp, Magnetic study of M-type Ru-Ti doped strontium hexaferrite nanocrystalline particles, Journal of Alloys and Compounds. 648 (2015) 419-427.

DOI: 10.1016/j.jallcom.2015.06.274

Google Scholar

[13] A.M. Romanov, A.A. Belyaev, E.E. Bespalova, Nedostatki volnovodnyh metodov izmereniya harakteristik radiopogloshaushih materialov, Works of VIAM. 3 (2015).

Google Scholar

[14] K.M. Zeyde, Analysis of electrodynamics properties of materials with high dispersity metal powder in axial moving systems, Materials Science Forum, Vol. 870, Trans Tech Publication, Switzerland. (2016) 90-94.

DOI: 10.4028/www.scientific.net/msf.870.90

Google Scholar

[15] L. Tong, H. Zha, Yu Tian, Determining the complex permittivity of powder materials from 1-40GHz using transmission-line technique, IEEE International Geoscience and Remote Sensing Symposium. (2013) 1380-1382.

DOI: 10.1109/igarss.2013.6723040

Google Scholar

[16] R. Huang, D. Zhang, Analysis of open-ended coaxial probes by using a two-dimensional finite-difference frequency-domain method, IEEE Transactions on Instrumentation and Measurement. 57(5) (2008) 931-939.

DOI: 10.1109/tim.2007.913830

Google Scholar

[17] S.E. Jacobo, W.G. Fano, A.C. Razzitte, N.D. Digiovanni, V. Trainotti, Dielectric properties of Barium Hexaferrite in microwave range, Conference on Electrical Insulation and Dielectric Phenomena Annual report, (1998).

DOI: 10.1109/ceidp.1998.733967

Google Scholar

[18] A. Bahadoor, Y. Wang, M. Afsar, Complex permittivity and permeability of hexaferrite and carbonyl iron powders using rectangular waveguide technique from 8-40GHz, IEEE International Magnetics Conference (INTERMAG), (2005).

DOI: 10.1109/intmag.2005.1463874

Google Scholar

[19] D.A. Vinnik, A. Yu. Tarasova, D.A. Zherebtsov, S.A. Gudkova, D.M. Galimov, V.E. Zhivulin, S. Nemrava, N.S. Perov, L.I. Isaenko, R. Niewa, Magnetic and structural properties of barium hexaferrite from various growth techniques, Journal of alloys and compounds, Submitted.

DOI: 10.3390/ma10060578

Google Scholar

[20] V.V. Atuchin, D.A. Vinnik, T.A. Gavrilova, S.A. Gudkova, L.I. Isaenko, X. Jiang, L.D. Pokrovsky, I.P. Prosvirin, , L.S. Mashkovtseva, Z. Lin, Flux Crystal Growth and the Electronic Structure of BaFe12O19 Hexaferrite, The Journal of Physical Chemistry C. (2016).

DOI: 10.1021/acs.jpcc.5b12243

Google Scholar

[21] Information on https: /www. speag. com/assets/downloads/speagflyers/1403-Speag-DAK. pdf.

Google Scholar

[22] A. Djordjevic, D. Olcan, M. Stojilovic, M. Pavlovic, B. Kolundzija, D. Tosic, Causal models of electrically large and lossy dielectric bodies, Facta universitatis, Series: Electronics and Energetics. 27(2) (2014) 221-234.

DOI: 10.2298/fuee1402221d

Google Scholar