[1]
J. Liu, Y. Zeng, Z. Su, M. Geiler, Y. Chen, V.G. Harris, Magnetic Properties of a Highly Textured Barium Hexa-Ferrite Quasi-Single Crystal and Its Application in Low-Field Biased Circulators, Journal of Electronic Materials, 45(10) (2016).
DOI: 10.1007/s11664-016-4699-7
Google Scholar
[2]
S.S.S. Afghahi, M. Jafarian, M. Salehi, Y. Atassi, Improvement of the performance of microwave X band absorbers based on pure and doped Ba-hexaferrite, Journal of Magnetism and Magnetic Materials. 421 (2017) 340-348.
DOI: 10.1016/j.jmmm.2016.08.042
Google Scholar
[3]
J. Singh, C. Singh, D. Kaur, S.B. Narang, R. Joshi, S.R. Mishra, R. Jotania, M. Ghimire, CC. Chauhan, Tunable microwave absorption in Co/Al substituted M-type Ba/Sr hexagonal ferrite, Materials and Design. 110 (2016) 749-761.
DOI: 10.1016/j.matdes.2016.08.049
Google Scholar
[4]
A.S. Mikheykin, E.S. Zhukova, V.I. Torgashev, A.G. Razumnaya, Y.I. Yuzyuk, B.P. Gorshunov, A.S. Prokhorov, A.E. Sashin, A.A. Bush, M. Dressel, Lattice anharmonicity and polar soft mode in ferrimagnetic M-type hexaferrite BaFe12O19 single crystal, European Physical Journal B. 87(10) (2014).
DOI: 10.1140/epjb/e2014-50329-4
Google Scholar
[5]
M. Jazirehpour, M.H. Shams, Microwave Absorption Properties of Ba–M Hexaferrite with High Substitution Levels of Mg–Ti in X Band, Journal of Superconductivity and Novel Magnetism, (2016) 1-7.
DOI: 10.1007/s10948-016-3698-5
Google Scholar
[6]
S.E. Rowley, Y. -S. Chai, S. -P. Shen, Y. Sun, A.T. Jones, B.E. Watts, J.F. Scott, Uniaxial ferroelectric quantum criticality in multiferroic hexaferrites BaFe12O19 and SrFe12O19, Scientific Reports. 6 (2016).
DOI: 10.1038/srep25724
Google Scholar
[7]
V.A. Turchenko, A.V. Trukhanov, I.A. Bobrikov, S.V. Trukhanov, A.M. Balagurov, Investigation of the Crystal and Magnetic Structures of BaFe12 ‒ xAlxO19 Solid Solutions (x = 0. 1‒1. 2), Crystallography Reports. 60(5) (2015) 629-635.
DOI: 10.1134/s1063774515030220
Google Scholar
[8]
H. Lou, J. Wang, Z. Zhao, X. Cai, Y. Hou, Effect of heat treatment on the structure of M-Type BaFe12O 19 hollow ceramic microspheres prepared by self-reactive quenching technology and microwave absorption properties, Journal of Materials Science. 48(16) (2013).
DOI: 10.1007/s10853-013-7362-1
Google Scholar
[9]
C. Wu, Z. Yu, Y. Yang, K. Sun, R. Guo, X. Jiang, Z, Lan, Brillouin function characteristics for La-Co substituted barium hexaferrites, Journal of Applied Physics, 118(10) (2015).
DOI: 10.1063/1.4930066
Google Scholar
[10]
M.H. Shams, A.S.H. Rozatian, M.H. Yousefi, The effect of Mn-Co-Ti dopants on the magnetic properties, Complex permittivity, permeability, and microwave absorbing characteristics of barium hexaferrite, Journal of Optoelectronics and Advanced Materials. 17(5-6) (2015).
Google Scholar
[11]
R. Topkaya, I. Auwal, A. Baykal, Effect of temperature on magnetic properties of BaYxFe12 −xO19 hexaferrites, Ceramics International, 42(14) (2016) 16296-16302.
DOI: 10.1016/j.ceramint.2016.07.178
Google Scholar
[12]
A.M. Alsmadi, I. Bsoul, S.H. Mahmood, G. Alnawashi, F.M. Al-Dweri, Y. Maswadeh, U. Welp, Magnetic study of M-type Ru-Ti doped strontium hexaferrite nanocrystalline particles, Journal of Alloys and Compounds. 648 (2015) 419-427.
DOI: 10.1016/j.jallcom.2015.06.274
Google Scholar
[13]
A.M. Romanov, A.A. Belyaev, E.E. Bespalova, Nedostatki volnovodnyh metodov izmereniya harakteristik radiopogloshaushih materialov, Works of VIAM. 3 (2015).
Google Scholar
[14]
K.M. Zeyde, Analysis of electrodynamics properties of materials with high dispersity metal powder in axial moving systems, Materials Science Forum, Vol. 870, Trans Tech Publication, Switzerland. (2016) 90-94.
DOI: 10.4028/www.scientific.net/msf.870.90
Google Scholar
[15]
L. Tong, H. Zha, Yu Tian, Determining the complex permittivity of powder materials from 1-40GHz using transmission-line technique, IEEE International Geoscience and Remote Sensing Symposium. (2013) 1380-1382.
DOI: 10.1109/igarss.2013.6723040
Google Scholar
[16]
R. Huang, D. Zhang, Analysis of open-ended coaxial probes by using a two-dimensional finite-difference frequency-domain method, IEEE Transactions on Instrumentation and Measurement. 57(5) (2008) 931-939.
DOI: 10.1109/tim.2007.913830
Google Scholar
[17]
S.E. Jacobo, W.G. Fano, A.C. Razzitte, N.D. Digiovanni, V. Trainotti, Dielectric properties of Barium Hexaferrite in microwave range, Conference on Electrical Insulation and Dielectric Phenomena Annual report, (1998).
DOI: 10.1109/ceidp.1998.733967
Google Scholar
[18]
A. Bahadoor, Y. Wang, M. Afsar, Complex permittivity and permeability of hexaferrite and carbonyl iron powders using rectangular waveguide technique from 8-40GHz, IEEE International Magnetics Conference (INTERMAG), (2005).
DOI: 10.1109/intmag.2005.1463874
Google Scholar
[19]
D.A. Vinnik, A. Yu. Tarasova, D.A. Zherebtsov, S.A. Gudkova, D.M. Galimov, V.E. Zhivulin, S. Nemrava, N.S. Perov, L.I. Isaenko, R. Niewa, Magnetic and structural properties of barium hexaferrite from various growth techniques, Journal of alloys and compounds, Submitted.
DOI: 10.3390/ma10060578
Google Scholar
[20]
V.V. Atuchin, D.A. Vinnik, T.A. Gavrilova, S.A. Gudkova, L.I. Isaenko, X. Jiang, L.D. Pokrovsky, I.P. Prosvirin, , L.S. Mashkovtseva, Z. Lin, Flux Crystal Growth and the Electronic Structure of BaFe12O19 Hexaferrite, The Journal of Physical Chemistry C. (2016).
DOI: 10.1021/acs.jpcc.5b12243
Google Scholar
[21]
Information on https: /www. speag. com/assets/downloads/speagflyers/1403-Speag-DAK. pdf.
Google Scholar
[22]
A. Djordjevic, D. Olcan, M. Stojilovic, M. Pavlovic, B. Kolundzija, D. Tosic, Causal models of electrically large and lossy dielectric bodies, Facta universitatis, Series: Electronics and Energetics. 27(2) (2014) 221-234.
DOI: 10.2298/fuee1402221d
Google Scholar