Growth of Hematite Nanostructures in Iron Foil for Environmental Cleaning

Article Preview

Abstract:

Hematite (Fe2O3) nanostructures were successfully grown on the surface of iron foil by simple thermal oxidation in air. The iron foil was heated at 300 – 700 °C for 8 h to produce Fe2O3 nanosheets and nanowires. The oxide layer is primarily composed of Fe2O3 with a small amount of magnetite (Fe3O4) and wustite (FeO). The photocatalytic activity of the Fe2O3 nanowires was investigated by degradation of methyl orange dye under 30 W UV light in the presence of a minute amount of hydrogen peroxide. The Fe2O3 nanowires exhibit excellent photocatalytic activity, wherein 2.5 ppm of the methyl orange was fully decomposed in 30 min.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 266)

Pages:

101-104

Citation:

Online since:

October 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] K.I. Milenova, P.M. Nikolov, A.L. Georgieva, T.T. Batakliev, V.F. Georgiev, S.K. Rakovsky: Journal of International Scientific Publications: Ecology and Safety Vol. 8 (2014), pp.231-6.

Google Scholar

[2] P. Peralta-Zamora, A. Kunz, S.G. de Moraes, R. Pelegrini, P. de Campos Moleiro, J. Reyes, and N. Duran: Chemosphere Vol. 38, No. 4 (1999), pp.835-52.

DOI: 10.1016/s0045-6535(98)00227-6

Google Scholar

[3] J.S. Knapp, P.S. Newby, and L.P. Reece: Enzyme Microb. Technol. Vol. 17, No. 7 (1995), pp.664-8.

Google Scholar

[4] X. Qu, P. Alvarez and Q. Li: Water Res. Vol. 47, No. 12 (2013), pp.3931-46.

Google Scholar

[5] S. Alvarez, S. Ye, P. Flowers and B. Wiley: Chem. Mater. Vol. 27, No. 2 (2015), pp.570-3.

Google Scholar

[6] Y. Zhao, W. Wang, Y. Li, Y. Zhang, Z. Yan and Z. Huo: Nanoscale Vol. 6, No. 1 (2014), pp.195-8.

Google Scholar

[7] Y. Zhang, M. Ram, E. Stefanakos and D. Goswami: J. Nanomater. Vol. (2012), pp.1-22.

Google Scholar

[8] D. Zhang and M. Yang: Phys. Chem. Chem. Phys. Vol. 15, No. 42 (2013), p.18523.

Google Scholar

[9] J. Tian, Z. Zhao, A. Kumar, R. Boughton and H. Liu: Chem. Soc. Rev. Vol. 43, No. 20 (2014), pp.6920-37.

Google Scholar

[10] G. Carraro, R. Sugrañez, C. Maccato, A. Gasparotto, D. Barreca, C. Sada, M. Cruz-Yusta, and L. Sánchez: Thin Solid Films Vol. 564 (2014), pp.121-7.

DOI: 10.1016/j.tsf.2014.05.048

Google Scholar

[11] M. Chirita and I. Grozescu: Chem. Bull. Polytech. Inst. Traian Vuia, Timisoara Vol. 54 (2009), pp.1-8.

Google Scholar

[12] M. Krajeewski, W.S. Lin, H.M. Lin, K. Brzozka, S. Lewinska, N. Nedelio, A. Slawska-Waniewska, J. Borysiuk, D. Wasik: Beilstein J. Nanotechnol. Vol 6 (2015), pp.1652-60.

DOI: 10.3762/bjnano.6.167

Google Scholar

[13] H. Zhang, H. Ming, S. Lian, H. Huang, H. Li, L. Zhang, Y. Liu, Z. Kang and S. -T. Lee: Dalton Trans. Vol. 40, No. 41 (2011), p.10822.

Google Scholar

[14] Y. Fu, J. Chen and H. Zhang: Chem. Phys. Lett. Vol. 350, No. 5-6 (2001), pp.491-4.

Google Scholar

[15] Y. Fu, R. Wang, J. Xu, J. Chen, Y. Yan, A. Narlikar and H. Zhang: Chem. Phys. Lett. Vol. 379, No. 3-4 (2003), pp.373-9.

Google Scholar

[16] P. Hiralal, H. Unalan, K. Wijayantha, A. Kursumovic, D. Jefferson, J. MacManus-Driscoll and G. Amaratunga: Nanotech. Vol. 19, No. 45 (2008), p.455608.

DOI: 10.1088/0957-4484/19/45/455608

Google Scholar

[17] L. Yuan, Y. Wang, R. Cai, Q. Jiang, J. Wang, B. Li, A. Sharma and G. Zhou: Mater. Sci. Eng., B Vol. 177, No. 3 (2012), pp.327-36.

Google Scholar