Morphology and Degradation Kinetics of N-Doped TiO2 Nano Particle Synthesized Using Sonochemical Method

Article Preview

Abstract:

Nano particle of N-doped TiO2 with the size of 21.42 nm was successfully created using sonochemical method. Concentration of Nitrogen (N) doping on TiO2 was calculated using mole ratio of Urea and TTiP. Doping variations were performed by doping 5% to 9% N, and did not change the crystallite size and strain. The nanoparticle produced has a polycrystalline structure with a dominant diffraction peak (101). Doping N into TiO2 affects the morphology of particle surface, thus tending to shrink. Results of photo catalysis on liquid samples of MB 20 ppm dye indicate that the addition of N improves the degradation ability of TiO2, with the highest value on sample T5 of 85% and with a rate of degradation kinetics of 0.024 ppm/minute.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 266)

Pages:

95-100

Citation:

Online since:

October 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] P. Kajitvichyanukula, J. Ananpattarachaia, S. Pongpomb, Sol–gel preparation and properties study of TiO2 thin film for photocatalytic reduction of chromium(VI) in photocatalysis process, Science and Technology of Advanced Materials, 6 (2005).

DOI: 10.1016/j.stam.2005.02.014

Google Scholar

[2] K. Eufinger, D. Poelman, H. Poelman, R. D. Gryse, G. B. Marin, TiO2 thin film for photocatalytic applications, Thin Solid Film Process and Application, (2008), 189-127.

DOI: 10.1016/j.tsf.2005.12.247

Google Scholar

[3] G. Yang, Z. Jiang, H. Shi, T. Xiao, Z. Yan, Preparation of highly visible-light active N-doped TiO2p Photocatalyst, Journal of Materials Chemistry, 20 (2010), 5301-5309.

DOI: 10.1039/c0jm00376j

Google Scholar

[4] S. Buzby, M. A. Barakat, H. Lin, C. Ni, S. A. Rykov, J. G. Chen, S. I. Shah, Visible light photocatalysis with nitrogen-doped titanium dioxide nanoparticles prepared by plasma assisted chemical vapor deposition, J. Vac. Sci. Technol. B, 24(3) (2006).

DOI: 10.1116/1.2192544

Google Scholar

[5] D. S. Tsoukleris, C. Fratti, E. A. Plavatou, I. Deligkiozi, K. Hrissagis, Influence of annealing process on N-doped TiO2 nanocrystalline powders prepared by sol-gel method, Sχολή Χηµικών Μηχaνικών, Ε.Μ.Π., (2013).

Google Scholar

[6] C. Chen, H. Bai, S. Chang, C. Chang, W. Den, Preparation of N-doped TiO2 photocatalyst by atmospheric pressure plasma process for VOCs decomposition under UV and visible light sources, Journal of Nanoparticle Research, 9 (2007), 365–375.

DOI: 10.1007/s11051-006-9141-2

Google Scholar

[7] I. Hernández-Perez, A. M. Maubert, L. Rendón, P. Santiago, H. Herrera-Hernández, L. D. Arceo, V. G. Febles, E. D. González, L. González-Reyes, Ultrasonic synthesis: structural, optical and electrical correlation of TiO2 nanoparticles, International Journal of Electrochemical Science, 7 (2012).

DOI: 10.1016/s1452-3981(23)18035-7

Google Scholar

[8] H. Sutanto, E. Hidayanto, Mukholit, S. Wibowo, I. Nurhasanah, Hadiyanto, The physical and photocatalytic properties of N-doped TiO2 polycrystalline synthesized by a single step sonochemical methode at room temperature, Material Science Forum, 890 (2017).

DOI: 10.4028/www.scientific.net/msf.890.121

Google Scholar

[9] T. Kim, V. Hernández-Perez, G. Gyawali, S. Cho, T. Sekino., S. Lee, Synthesis of solar light responsive Fe, N co-doped TiO2 photocatalyst by sonochemical method, Catalysis Today, 212 (2012), 75-80.

DOI: 10.1016/j.cattod.2012.09.014

Google Scholar

[10] L. Zhu, J. D Chung, W.C. Oh, Rapid sonochemical synthesis of novel PbSe–graphene–TiO2 composite sonocatalysts with enhanced on decolorization performance and generation of ROS, Ultrasonics Sonochemistry, 27 (2015), 252-261.

DOI: 10.1016/j.ultsonch.2015.05.037

Google Scholar

[11] C. Kahatthaa, N. Wongpisutpaisana, N. Vittayakorna, W. Pecharapa, Physical properties of V-doped TiO2 nanoparticles synthesized by sonochemical-assisted process, Ceramics International, 39 (2013), S389-S393.

DOI: 10.1016/j.ceramint.2012.10.100

Google Scholar