Nanostructured TiO2 Materials: Preparation, Properties and Potential Applications (3P’s)

Article Preview

Abstract:

Nanostructured materials are a new class of materials which provide one of the greatest potentials for improving performance and extended capabilities of products in a number of applications. In particular nanostructured TiO2 was used as photocatalysts, gas sensor, solar cells and nanocomposite biomaterials. For each of these applications, aspects such as surface morphology, crystallinity and chemistry of the titania-based materials are the key parameters to be settled for the process optimization. A series of nanostructured TiO2 materials (TiO2 nanotubes, TiO2 nanorods, TiO2 nanoparticles) was synthesized using simple hydrothermal methods. X-Ray Diffraction (XRD), Field Emission Scanning Electron microscope (FESEM) and Brunauer–Emmett–Teller (BET) surface area characterization was carried out to study the properties of synthesized nanostructured TiO2 materials. The performance of synthesized nanostructured TiO2 was evaluated for various applications such as photocatalyst for methyl orange (MO) degradation and anti-bacterial thin film for biomedical and food packaging. Among the nanostructured TiO2 materials, TiO2 nanotubes shows the highest activity regardless of their applications. This is probably due to their nanotubular morphology in which provided high surface area materials. The surface area of TiO2 nanotubes was found to be 226.52 m2/g. The outer and inner diameters of nanotubes are 4 nm and 10 nm, respectively with several hundred nanometers in length. Anatase TiO2 phase structure and crystallinity of TiO2 nanotubes supports the good performances of the nanostructured materials.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 266)

Pages:

84-89

Citation:

Online since:

October 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Manivel, A., Naveenraj, S., Sathish Kumar, P.S., Anandan, S. (2010). CuO-TiO2 nanocatalyst for photodegradation of acid red 88 in aqueous solution. Science of Advanced Materials, 2 (1), pp.51-57.

DOI: 10.1166/sam.2010.1071

Google Scholar

[2] Lei, Y., Zhang, C., Lei, H., Huo, J. (2013).

Google Scholar

[3] Malwadkar., S. S., Gholap, R. S., Awate, S. V., Korake, P. V., Chakar, M., Gupta, N. M. (2009).

Google Scholar

[4] Li, X., Liu, H., Luo, D., Li, J., Huang, Y., Li, H., Fang, Y., Xu, Y., Zhu, L. (2012).

Google Scholar

[5] Wang, K. X., Wei, M. D., Morris, M. A., Zhou, H. S., Holmes, J. D. (2007). Mesoporous titania nanotubes: Their preparation and application as electrode materials for rechargeable lithium batteries. Advanced Materials, 19 (19), p.3016–3020.

DOI: 10.1002/adma.200602189

Google Scholar

[6] Perillo, P. M., Rodríguez, D.F. (2012). The gas sensing properties at room temperature of TiO2 nanotubes by anodization. Sensors and Actuators B: Chemical, 171-172, pp.639-643.

DOI: 10.1016/j.snb.2012.05.047

Google Scholar

[7] Pokropivny, V.V., Skorokhod, V.V. (2008). New dimensionality classifications of nanostructures. Physica E: Low-dimensional Systems and nanostructures, 40 (7), pp.2521-2525.

DOI: 10.1016/j.physe.2007.11.023

Google Scholar

[8] Razali, M.H., Ruslimie C.A., Khairul, M.W. (2013). Modification and performances of TiO2 photocatalyst towards degradation of paraquat dichloride. Journal of Sustainability Science and Management, 8 (2), pp.244-253.

Google Scholar

[9] Sathishkumar, M., Pavagadhi, S., Mahadevan, A., Balasubramanian, R. (2015). Biosynthesis of gold nanoparticles and related cytotoxicity evaluation using A549 cells. Ecotoxicology and Environmental Safety, 114, p.232–240.

DOI: 10.1016/j.ecoenv.2014.03.020

Google Scholar

[10] Razali, M. H., Mohd Noor, A. F. and Yusoff, M. (2015).

Google Scholar

[11] Wang, H., Y. Wu, B.Q. Xu, (2005). Preparation and characterization of nanosized anatase TiO2 cuboids for photocatalysis. Applied Catalyst A, 59: 139-146.

DOI: 10.1016/j.apcatb.2005.02.001

Google Scholar

[12] Ding, Z., G.Q. Lu, P.F. Greenfield, (2000). Role of the crystalline phase of TiO2 in heterogeneous photocatalysis for phenol oxidation in water. Journal Physics Chemical B, 104: 4815-4820.

DOI: 10.1021/jp993819b

Google Scholar

[13] Song, S., Z. Liu, Z. He, A. Zhang, J. Chen, Y. Yang, X. Xu, (2010). Impacts of morphology and crystalline phases of titanium oxide on catalytic ozonation of phenol. Environment Science Technology, 44: 3913- 3918.

DOI: 10.1021/es100456n

Google Scholar

[14] Lin, X.H., W.M. Liu, H.L. Li, (2005). Template synthesis of well-aligned titanium dioxide nanotubes. Applied Physics A, 80: 317–320.

DOI: 10.1007/s00339-003-2183-8

Google Scholar

[15] Shi, X. X., Yuan, L. J., Sun, X. Z. (2008). Controllable synthesis of 4ZnO·B2O3·H2O nano- /microstructures with different morphologies: influence of hydrothermal reaction parameters and formation mechanism, J. Phys. Chem. 112, p.3558–3567.

DOI: 10.1021/jp7103962

Google Scholar

[16] Santhoshkumar, T., Rahuman, A. A., Jayaseelan, C. Rajakumar G., Marimuthu, S., Kirthi, A. V., Velayutham, K., Thomas, J., Venkatesan, J., Kim, S. G. (2014).

DOI: 10.1016/s1995-7645(14)60171-1

Google Scholar