Diffractografic Analysis of AISI 420 Steel

Article Preview

Abstract:

The paper presents a study on the structure of AISI 420 steel after heat treatments. The experiments start with a spectral analysis for determination of percents for alloying elements. Based on obtained results was establish of heat treatments parameters, which can be applied on AISI 420 steel. By thermal processing can be influenced positive on structural modifications and implied on mechanical properties. Structural modifications were highlight by X-ray diffraction analysis.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 273)

Pages:

128-133

Citation:

Online since:

April 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A. Calik, M.S. Karakaş, Effect of heat treatment on the microstructure and mechanical properties of martensitic stainless-steel joints welded with austenitic stainless-steel fillers, Materiali in Tehnologije, 47(4) (2013) 403-407.

DOI: 10.1016/j.vacuum.2022.111440

Google Scholar

[2] R. Sola, R. Giovanardi, P. Veronesi, G. Poli, Effect of quenching method on the wear and corrosion resistance of stainless steel AISI 420 (TYPE 30Kh13), Metal Science and Heat Treatment, 54(11-12) (2013) 644-647.

DOI: 10.1007/s11041-013-9564-1

Google Scholar

[3] L.F. Alvarez, C. Garcia, V. Lopez, Continuous cooling transformations in martensitic stainless steels, ISIJ International, 34(6) (1994) 516-521.

DOI: 10.2355/isijinternational.34.516

Google Scholar

[4] L.D. Barlow, M. Du Toit, Effect of austenitizing heat treatment on the microstructure and hardness of martensitic stainless steel AISI 420, Journal of Materials Engineering and Performance, 21(7) (2012) 1327-1336.

DOI: 10.1007/s11665-011-0043-9

Google Scholar

[5] M.G. Minciună, P. Vizureanu, D.C. Achiței, N. Ghiban, A.V. Sandu, N.C. Forna, Structural Characterization of Some CoCrMo Alloys with Medical Application, Rev. de Chimie, 65(3) (2014) 335-341.

Google Scholar

[6] G. Nemţoi, M.S. Secula, I. Creţescu, S. Petrescu, Rev. de Chimie, 57(10) (2007) 952-956.

Google Scholar

[7] S. Petrescu, M.S. Secula, G. Nemtoi, I. Cretescu, Rev. de Chimie, 60(5) (2009) 462-467.

Google Scholar

[8] G. Nemtoi, F. Ionica, T. Lupascu, A. Cecal, Chemistry Journal of Moldova. General, Industrial and Ecological Chemistry, 5(1) (2010) 98-105.

DOI: 10.19261/cjm.2010.05(1).10

Google Scholar

[9] M. Sànchez, J. Gegori, M.C. Alonso, J.J. Garcia - Jareno, H. Takenouti, V. Vicente, Electrochemica acta, 52 (2007) 7634.

Google Scholar

[10] S. Ningshen, U. Kamachi Mudali, G. Amarendra, Baldeo Raj, Corrosion Science, 51(2009) 322-329.

DOI: 10.1016/j.corsci.2008.09.038

Google Scholar

[11] D.M. Gordin, T. Gloriant, G. Nemtoi, R. Chelariu, N. Aelenei, A. Guillou, D. Ansel, Materials letters, 59 (2005) 2936-2941.

DOI: 10.1016/j.matlet.2004.09.063

Google Scholar

[12] G. Nemţoi, A. Ciomaga, T. Lupaşcu, Revue Roumaine de Chimie, 57 (9-10) (2012) 837-841.

Google Scholar

[13] Qiang Guo, Jian-Hua Liu, Mei Yu, Song-Mei Li, Acta Metall. Sin. (Engl. Lett.), 28 (2) (2015) 139–146.

Google Scholar

[14] J. O'M Bockris, Reddz A.K.N., Modern Electrochemistry, 2, New York, Plenum Press, (1970).

Google Scholar

[15] D.A. Jones, Principles and prevention of Corossion, New York, Macmillan, (1992).

Google Scholar