Synthesis and Characterization of Ag/TiO2 Thin Film via Sol-Gel Method

Article Preview

Abstract:

Ag/TiO2 thin films were prepared via sol-gel spin coating method. Structural, surface morphology and optical properties were investigated with the addition of two different amount of silver (Ag). X-ray diffraction pattern shows the sample with pure TiO2, the only phase presence was brookite TiO2. When the Ag content added into the solution, the phase existed for the samples with TiO2 doped 0.5g Ag and TiO2 doped 1.0g Ag were anatase TiO2 with no peak corresponds to Ag phase. The surface morphology of film was characterized by scanning electron microscopy (SEM). The films were annealed at 450 °C and it shows non-uniform films. The films have a large flaky and cracks film which was attributed to surface tension between the film and the air during the drying process. When the solution of sol was added with Ag content, it shows the porous structure with flaky-crack films. With the increasing of the Ag content from 0.5g to 1.0g, the structure is more porous and it is good for the photocatalytic activity. The UV-Vis spectra shows that the film exhibits a low absorbance which was due to the substrate is inhomogeneously covered by the flaky-crack films.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 273)

Pages:

140-145

Citation:

Online since:

April 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Z. Zhao, J. Sun, S. Xing, D. Liu, G. Zhang, L. Bai and B. Jiang: J. Alloys Compd. Vol. 679 (2016), p.88.

Google Scholar

[2] M. Machida, K. Norimoto, T. Watanabe, K. Hashimoto and A. Fujishima: J. Mater. Sci. Vol. 34 (1999), p.2569.

Google Scholar

[3] C. Young, T. M. Lim, K. Chiang, J. Scott and R. Amal: Appl. Catal. B.: Environ. Vol. 78 (2008), p.1.

Google Scholar

[4] I. Paramasivam, J. M. Macak and P. Schmuki: Electrochem. Commun. Vol. 10 (2008), p.71.

Google Scholar

[5] K. Kontapakdee, J. Panpranot and P. Praserthdam: Catal. Commun. Vol. 8 (2007), p.2166.

Google Scholar

[6] M. K. Seery, R. George, P. Floris, and S. C. Pillai: J. Photochem. Photobiol. A Chem. Vol. 189 (2007), p.258.

Google Scholar

[7] S. Demirci, T. Dikici, M. Yurddaskal, S. Gultekin, M. Toparli, and E. Celik: Appl. Surf. Sci. Vol. 390 (2016), p.591.

DOI: 10.1016/j.apsusc.2016.08.145

Google Scholar

[8] J. H. Wei, J. Xiao, X. J. Zhao, J. G. Guan, and R. Z. Yuan: J. Wuhan Univ. Technol. Sci. Ed. Vol. 16 (2001), p.27.

Google Scholar

[9] X. W. Zhang, M. H. Zhou and L. C. Lei: Mater. Chem. Phys. 91 (2005), p.73.

Google Scholar

[10] X. He, X. J. Zhao and B. S. Liu: Appl. Surf. Sci. 254 (2008), p.1705.

Google Scholar

[11] J. G. Yu, J. F. Xiong, B. Cheng and S. W. Liu: Appl. Catal. B: Environ. Vol. 60 (2005), p.211.

Google Scholar

[12] S. W. Ryu, E. J. Kim, S. K. Ko and S. H. Hahn: Mater. Lett. Vol. 58 (2004), p.582.

Google Scholar

[13] M.A. Fox and M.T. Dulay: Chem. Rev. Vol. 93 (1993), p.341.

Google Scholar

[14] K. Kato, A. Tsuzuki, H. Taoda, Y. Torii, T. Kato and Y. Butsugan: J. Mater. Sci. Vol. 29 (1994), p.5911.

Google Scholar

[15] A. I. Kokorin and D. W. Bahnemann: Chemical Physics of Nanostructured Semiconductors (VSP: Boston, MA, USA, 2003).

Google Scholar

[16] M. Nasr-Esfahani and M. H. Habibi: International Journal of Photoenergy (2008), p.1.

Google Scholar

[17] T. Ivanova, A. Harizanova, T. Koutzarova and B. Vertruyen: Journal of Physics: Conference Series Vol. 764 (2016), p.012019.

Google Scholar

[18] A. O. Ibhadon and P. Fitzpatrick: Catalysts Vol. 3 (2013), p.189.

Google Scholar

[19] M. Vohra, S. Kim and W. Choi: J. Photochem. Photobiol.A Chem. Vol. 160 (2003), p.55.

Google Scholar

[20] S. Hata, Y. Kai, I. Yamanaka, H. Oosaki, K. Hirota and S. Yamazaki: JSAE Rev. Vol. 21 (2000), p.97.

Google Scholar

[21] R. Asahi, T. Morikawa, T. Ohwahi, K. Aoki and Y. Taga: Science Vol. 293 (2001), p.269.

Google Scholar

[22] C. A. K. Gouvea, F. Wypych, S. G. Moraes, N. Duran, and P. Peralta-Zamora: Chemosphere Vol. 40 (2000), p.427.

Google Scholar

[23] M. J. Height, S. E. Pratsinis, O. Mekasuwandumrong, and P. Praserthdam: Applied Catalysis B Vol. 63 (2006), p.305.

Google Scholar

[24] S. Chen and U. Nickel: Chemical Communications No. 2 (1996), p.133.

Google Scholar

[25] T. Abe, E. Suzuki, K. Nagoshi, K. Miyashita, and M. Kaneko: Journal of Physical Chemistry B Vol. 103 (1999), p.1119.

Google Scholar

[26] V. Subramanian, E. E. Wolf, and P. V. Kamat: Journal of Physical Chemistry B Vol. 105 (2001), p.11439.

Google Scholar

[27] X. Lin, F. Rong, X. Ji and D. Fu: Microporous and Mesoporous Materials Vol. 142 (2010), p.276.

Google Scholar

[28] A. M. Gaur: Deposition of Doped TiO2 Thin Film by Sol-Gel Technique and its Characterization: A Review, Proceedings of the World Congress on Engineering Vol II, London, U. K. (2011).

Google Scholar

[29] A. Shokuhfar, M. Alzamani, E. Eghdam, M. Karimi and S. Mastali: Nanoscience and Nanotechnology Vol. 2 (1) (2012), p.16.

Google Scholar

[30] A.Elfanaoui, E. Elhamri, L. Boulkaddat, A. Ihlal, K. Bouabid, L. Laanab, A. Taleb and X. Portier: International J. of Hydrogen Energy Vol. 36 (2011), p.4130.

DOI: 10.1016/j.ijhydene.2010.07.057

Google Scholar

[31] S. S. Latthe, S. Liu, C. Terashima, K. Nakata and A.,Fujishima: Coatings Vol. 4 (2014), p.497.

Google Scholar

[32] V. L. Chandraboss, B. Karthikeyan, J. Kamalakkannan, S. Prabha and S. Senthilvelan: J. of Nanoparticles Vol. 13 (2013), p.1.

Google Scholar