Liquid Phase Sintering of (Ti,W)C-Ni-Co-Cr Cermets: Microstructure and Abrasive Wear Behavior

Article Preview

Abstract:

TiC-WC-(Ni,Co,Cr) cermets are potential candidates for the substitution of straight cemented carbides in certain wear applications. This work analyses the effect of Ti/W and Co/Ni ratios on the microstructure and abrasion resistance of this type of cermets. From a microstructural point of view, cermets in the (Ti,W)C-(Ni,Co,Cr) pseudo-binary region show uncontrolled (Ti,W)C grain growth and a high degree of contiguity of the carbide phase. A microstructural refinement is observed as the Ti/W ratio decreases, especially when WC precipitation occurs. Abrasion resistance in these materials is dominated by hardness.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 274)

Pages:

1-8

Citation:

Online since:

May 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Critical raw materials for the EU", Raw Material Supply Group, European Commission, Entreprise and Industry, July (2010).https://ec.europa.eu/growth/sectors/raw-materials/specific-interest/critical_en.

Google Scholar

[2] Report on Critical Raw Materials for the EU, May 2014, Report of the Ad hoc Working Group on defining critical raw materials. http://www.catalysiscluster.eu.

Google Scholar

[3] M. Seo, J. Kim, S. Kang, Int. Journal of Refractory Metals and Hard Materials 29 (2011) 424–428.

Google Scholar

[4] V.T. Golovchan, Int. Journal of Refractory Metals and Hard Materials 26 (2008) 301–305.

Google Scholar

[5] H. Doi Advanced TiC and TiC-TiN based cermets,, Inst. Phys. Conf. Ser. No. 75, Chapter 6, Bristol and Boston: Adam Hilger Ltd.; Almond E A, Brookes C A, Warren R, Eds., (1986), 489-523.

Google Scholar

[6] H. Suzuki, H. Matsubara, J. Japan Soc. Powder Powder Metall., (1983), 30, 257-262.

Google Scholar

[7] Pastor H., Mater. Sci. Eng., (1988), A105/106, 401-409.

Google Scholar

[8] Ettmayer P., Kolaska H., Lengauer W, Dreyer K, Int. J. Refract. Met. H., (1995), 13, 343-351.

Google Scholar

[9] I. Iparraguirre, N. Rodriguez, F. Ibarreta, R. Martinez and J.M. Sanchez, Int. Journal of Refractory Metals and Hard Materials 43 (2014), 125–131.

DOI: 10.1016/j.ijrmhm.2013.11.012

Google Scholar

[10] L. Chen, W. Lengauer, P. Ettmayer, K. Dreyer, H.W. Daub, D. Kassel, Int. J. Refract. Met. H., (2000), 18, 307-322.

Google Scholar

[11] Jung J., Kang S., Acta Mat., (2004), 52, 1379-1386.

Google Scholar

[12] Ahn S.Y., Kang S., J. Am. Ceram. Soc., (2000), 83, 6, 1489-1494.

Google Scholar

[13] Park S., Kang S., Scripta Mat., (2005), 52, 129-133.

Google Scholar

[14] Demoly A., Lengauer W., Veitsch C., Rabitsch K., Int. J. Refract. Met. H., (2011), 29, 6, 716–723.

Google Scholar

[15] D.K. Chaudhuri, D. Xie, A.L. Lakshmanan, Wear 209 140-152, (1997).

Google Scholar