Effect of WС Content on the Mechanical Properties and High Temperature Oxidation Behavior of Ti(С,N)-Based Cermets

Article Preview

Abstract:

Ti (C,N)-based cermets with varying WC additions (Ti (C0.6N0.4)-36Ni-12Mo-1C-xWC, x = 0, 3, 6 and 9 wt%) were prepared by conventional powder metallurgy techniques. The microstructure and mechanical properties of all four Ti (C,N)-based cermets were investigated. Isothermal oxidation of all four cermets were also investigated in air at 800°C up to 100 h using scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDX) and X-ray diffraction analysis (XRD). The grains of Ti (C,N)-based cermets became more homogeneous with the increase of WC content. The TRS and fracture toughness increased with the increase of WC content and then decreased when WC content exceeded 6wt%, but hardness decreased continuously with the increase of WC content. The oxide scales formed on the surface of all four samples during the oxidation process were porous and multi-layered, consisting of NiO outerlayer and TiO2 based innerlayer, respectively. The thickness of the oxide scales and oxidation rates increased with the increase of WC content, especially when the content of WC addition reached 9wt%. The cermet with 6wt% WC addition showed excellent mechanical properties and acceptable high temperature oxidation resistance.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 274)

Pages:

9-19

Citation:

Online since:

May 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] P. Ettmayer, H. Kolaska, W. Lengauer, K. Dreyer, Ti(C, N) cermets-metallurgy and properties, Int. J. Refract. Met. Hard Mater. 13 (1995) 343-351.

DOI: 10.1016/0263-4368(95)00027-g

Google Scholar

[2] Y. Zheng, W.J. Liu, S.X. Wang, W.H. Xiong, Effect of carbon content on the microstructure and mechanical properties of Ti(C, N)-based cermets, Ceram. Int. 30 (2004) 2111-2115.

DOI: 10.1016/j.ceramint.2003.11.016

Google Scholar

[3] D. Moskowitz, L.L. Terner, TiN improves properties of titanium carbonitride based materials. Int. J. Refract. Met. Hard. Mater. 5 (1986) 131-139.

Google Scholar

[4] Y. Zheng, W.H. Xiong, W.J. Liu, W. Lei, Q. Yuan, Effect of nano addition on the microstructures and mechanical properties of Ti(C, N)-based cermets, Ceram. Int. 31 (2005) 165-170.

DOI: 10.1016/j.ceramint.2004.04.005

Google Scholar

[5] Y.J. Zhao, Y. Zheng, W. Zhou, J.J. Zhang, G.T. Zhang, W.H. Xiong, Microstructure and performance of functionally gradient Ti(C, N)-based cermets fabricated by low-pressure carburizing treatment during liquid phase sintering, Ceram. Int. 43 (2017).

DOI: 10.1016/j.ceramint.2016.10.159

Google Scholar

[6] W. Zhou, Y. Zheng, Y.J. Zhao, Y.P. Ma, W.H. Xiong, Microstructure characterization and mechanical properties of Ti(C, N)-based cermets with AlN addition, Ceram. Int. 41 (2015) 5010-5016.

DOI: 10.1016/j.ceramint.2014.12.068

Google Scholar

[7] S. Bolognini, G. Feusier, D. Mari, T. Viatte, W. Benoit, TiMoCN-based cermets: high temperature deformation, Int. J. Refract. Met. Hard Mater. 21 (2003) 19-29.

DOI: 10.1016/s0263-4368(02)00091-4

Google Scholar

[8] E.B. Clark, B. Roebuck, Extending the application areas for titanium carbonitride cermets, Int. J. Refract. Met. Hard Mater. 11 (1992) 23-33.

DOI: 10.1016/0263-4368(92)90081-c

Google Scholar

[9] Y.J. Zhao, Y. Zheng, W. Zhou, J.J. Zhang, G.T. Zhang, W.H. Xiong, Microstructure and performance of functionally gradient Ti(C, N)-based cermets fabricated by low-pressure carburizing treatment during liquid phase sintering, Ceram. Int. 43 (2017).

DOI: 10.1016/j.ceramint.2016.10.159

Google Scholar

[10] H. Yu, Y. Liu, Y. Jin, J. Ye, Effect of secondary carbides addition on the microstructure and mechanical properties of (Ti,W,Mo,V)(C,N)-based cermets, Int. J. Refract. Met. Hard. Mater. 29 (5) (2011) 586-590.

DOI: 10.1016/j.ijrmhm.2011.03.013

Google Scholar

[11] X.B. Zhang, N. Liu, C.L. Rong, Effect of molybdenum content on the microstructure and mechanical properties of ultra-fine Ti(C,N) based cermets, Mater. Charact. 59 (2008) 1690-1696.

DOI: 10.1016/j.matchar.2008.03.008

Google Scholar

[12] T. Cutard, T. Viatte, G. Feusier, W. Benoit, Microstructure and high temperature mechanical properties of TiC0.7N0.3-Mo2C-Ni cermets, Mater. Sci. Eng. A. 209 (1996) 218-227.

DOI: 10.1016/0921-5093(95)10100-4

Google Scholar

[13] S.Y. Ahn, S. Kang, Effect of WC particle size on microstructure and rim composition in the Ti(C0.7N0.3)-WC-Ni system, Scripta Mater. 55 (11) (2006) 1015-1018.

DOI: 10.1016/j.scriptamat.2006.08.008

Google Scholar

[14] J. Wang, Y. Liu, P. Zhang, J.C. Peng, J.W. Ye, M.J. Tu, Effect of WC on the microstructure and mechanical properties in the Ti(C0.7N0.3)-xWC-Mo2C-(Co,Ni) system, Int. J. Refract. Met. Hard. Mater. 27 (2009) 9-13.

DOI: 10.1016/j.ijrmhm.2008.01.010

Google Scholar

[15] Q.Q. Yang, W.H. Xiong, S.Q. Li, H.X. Dai, J. Li, Characterization of oxide scales to evaluate high temperature oxidation of Ti(C, N)-based cermets in static air, J. Alloys Compd. 506 (2010) 461-467.

DOI: 10.1016/j.jallcom.2010.07.031

Google Scholar

[16] D.S. Park, P. Chan, Y.D. Lee, Oxidation of Ti(C,N)-based ceramics exposed at 1373 K in air, J. Am. Ceram. Soc. 83 (3) (2010) 672-674.

Google Scholar

[17] D.K. Shetty, I.G. Wright, P.N. Mincer, A.H. Clauer, Indentation fracture of WC-Co cermets, J. Mater. Sci. 20 (1985) 1873-1882.

DOI: 10.1007/bf00555296

Google Scholar

[18] S.Y. Ahn, S. Kang, Formation of core/rim structures in Ti(C,N)-WC-Ni cermets via a dissolution and precipitation process, J. Am. Ceram. Soc. 83 (2000) 1489-1494.

DOI: 10.1111/j.1151-2916.2000.tb01415.x

Google Scholar

[19] S. Kim, K.H. Min, S. Kang, Rim structure in Ti(C0.7N0.3)-WC-Ni cermets, J. Am. Ceram. Soc. 86 (2003) 1761-1766.

DOI: 10.1111/j.1151-2916.2003.tb03551.x

Google Scholar

[20] J. Qu, W.H. Xiong, D.M. Ye, Z.H. Yao, W.J. Liu, S.J. Lin, Effect of WC content on the microstructure and mechanical properties of Ti(C0.5N0.5)-WC-Mo-Ni cermets, Int. J. Refract. Met. Hard. Mater. 28 (2) (2010) 243-249.

DOI: 10.1016/j.ijrmhm.2009.10.005

Google Scholar

[21] X.B. Zhang, N. Liu, Microstructure, mechanical properties and thermal shock resistance of nano-TiN modified TiC-based cermets with different binders, Int. J. Refract. Met. Hard. Mater. 26 (6) (2008) 575-582.

DOI: 10.1016/j.ijrmhm.2008.01.008

Google Scholar

[22] E. Chicardi, F.J. Gotor, J.M. Córdoba, Enhanced oxidation resistance of Ti(C,N)-based cermets containing Ta, Corros. Sci. 84 (8) (2014) 11-20.

DOI: 10.1016/j.corsci.2014.03.007

Google Scholar

[23] E. Butchereit, K.G. Nickel, A. Muller, Precursor-derived Si-B-C-N ceramics:oxidation kinetics, J. Am. Ceram Soc. 84 (10) (2001) 2184-2188.

DOI: 10.1111/j.1151-2916.2001.tb00985.x

Google Scholar

[24] C.L. Zeng, G.Q. Liu, W.T. Wu, Oxidation behavior of Ni-Ti alloys at 650-850℃ in air, Acta Metall. Sin. 37 (8) (2001) 861-864.

Google Scholar

[25] K. Bhuntumkomol, K.N. Han, F. Lawson, The leaching behaviour of nickel oxides in acid and in ammoniacal solutions, Hydrometallurgy. 8 (2) (1982) 147-160.

DOI: 10.1016/0304-386x(82)90041-x

Google Scholar

[26] P. Kofstad, High-temperature oxidation of titanium, J. Less-Common Met. 12 (6) (1967) 449-464.

DOI: 10.1016/0022-5088(67)90017-3

Google Scholar

[27] F. Cai, C.W. Nan, R.Z. Yuan, The oxidation behavior of (Nb, Ti)C-Ni cermet, J. Chin. Ceram. Soc. 23 (2) (1995) 224-228.

Google Scholar

[28] F. Monteverde, A. Bellosi, Oxidation behaviour of titanium carbonitride based materials, Corros. Sci. 44 (2002) 1967-(1982).

DOI: 10.1016/s0010-938x(01)00142-1

Google Scholar

[29] Q.Q. Yang, W.H. Xiong, S.Q. Li, Z.H. Yao, X. Chen, Early high temperature oxidation behaviour of Ti(C,N)-based cermets in air, Corros. Sci. 52 (10) (2010) 3205-3211.

DOI: 10.1016/j.corsci.2010.05.028

Google Scholar