Effect of Ti(C0.7N0.3) Content on the Microstructure and Mechanical Properties of Ni Bonded NbC-Ti(C0.7N0.3) Based Cermets

Article Preview

Abstract:

NbC-xTi (C0.7N0.3)-10Ni-7.5VC (vol%) based cermets with 0, 5, 10, 15 or 25 vol% Ti (C0.7N0.3) were prepared by conventional pressureles liquid phase sintering at 1420°C in vacuum. Detailed microstructural investigation was performed by SEM, EPMA and XRD analysis. Sintering results indicated that the partial replacement of NbC by Ti (C0.7N0.3) had a significant effect on the carbide grain growth, microstructure, hardness as well as fracture toughness of the fully densified NbC-based cermets. The Ti (C0.7N0.3)-free NbC cermet was composed of homogeneous cubic (Nb,V)C solid solution grains, whereas core-rim structured NbC grains were observed in cermets with Ti (C0.7N0.3) addition. All sintered cermets with  15 vol% Ti (C0.7N0.3) were composed of a fcc solid solution Ni binder and a cubic core-rim solid solution (Nb,V,Ti)C phase with a Nb-rich core and a Ti-rich rim. 3.8 vol% of residual pristine Ti (C0.7N0.3) was present in the cermets with 25 vol% Ti (C0.7N0.3) addition. The 15 vol% Ti (C0.7N0.3) starting powder based cermet exhibited the finest average NbC grain size of 1.48 μm, with a core-rim structure and an interesting combination of hardness (1486 kg/mm2) and fracture toughness (8.7 MPa.m1/2).

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 274)

Pages:

43-52

Citation:

Online since:

May 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S. Zang, Titanium carbonitride-based cermets: process and properties, Mater. Sci. Eng. A163 (1993) 141-148.

Google Scholar

[2] P. Ettmayer, H. Kolaska, W. Lengauer, K. Dreyer, Ti(CN) cermets: metallurgy and properties, Int. J. Refract. Met. Hard Mater. 13 (1995) 343-351.

DOI: 10.1016/0263-4368(95)00027-g

Google Scholar

[3] Y. Peng, H. Miao, Z. Peng, Development of TiCN-based cermets: mechanical properties and wear mechanism, Int. J. Refract. Met. Hard Mater. 39 (2013) 78-89.

DOI: 10.1016/j.ijrmhm.2012.07.001

Google Scholar

[4] A. Rajabi, Chemical composition, microstructure and sintering temperature modifications on mechanical properties of TiC-based cermet-a review, M.J. Ghazali, A.R. Daud, Mater. Des. 67 (2015) 95-106.

DOI: 10.1016/j.matdes.2014.10.081

Google Scholar

[5] E.B. Clark, B. Roebuck, Extending the application areas for titanium carbonitride cermets, Int. J. Refract. Met. Hard Mater. 11 (1992) 23-33.

DOI: 10.1016/0263-4368(92)90081-c

Google Scholar

[6] N. Liu, S. Chao, H.D. Yang, Cutting performances, mechanical property and microstructure of ultra-fine grade Ti(C, N)-based cermets, Int. J. Refract. Met. Hard Mater. 24 (2006) 445-452.

DOI: 10.1016/j.ijrmhm.2005.09.001

Google Scholar

[7] X.B Zhang, N. Liu, Microstructure, mechanical properties and thermal shock resistance of nano-TiN modified TiC-based cermets with different binders, Int. J. Refract. Met. Hard Mater. 26 (2008) 575-582.

DOI: 10.1016/j.ijrmhm.2008.01.008

Google Scholar

[8] B.L. Ezquerra, N. Rodriguez, J.M. Sánchez, Comparison of the damage induced by thermal shock in hardmetals and cermets, Int. J. Refract. Met. Hard Mater. 61 (2016) 147-150.

DOI: 10.1016/j.ijrmhm.2016.09.008

Google Scholar

[9] Hiroyuki Hosokawa, Kiyotaka Katou, Koji Shimojima, Ryoichi Furushima, Akihiro Matsumoto, Microstructural Evaluation of Ti(C0.7N0.3)-Mo2C-xNbC-Ni Cermets, Materials Transactions, 56(9) (2015) 1539-1543.

DOI: 10.2320/matertrans.y-m2015817

Google Scholar

[10] S.G. Huang, L. Li, O. Van der Biest, J. Vleugels, VC-and Cr3C2-doped WC-NbC-Co hardmetals, J Alloys Compd., 464 (1) (2008) 205-211.

DOI: 10.1016/j.jallcom.2007.10.038

Google Scholar

[11] S.G. Huang, R.L. Liu, L. Li, O. Van der Biest, J. Vleugels, NbC as grain growth inhibitor and carbide in WC-Co hardmetals, Int. J. Refract. Met. Hard Mater., 26 (5) (2008) 389-395.

DOI: 10.1016/j.ijrmhm.2007.09.003

Google Scholar

[12] B.V.M. Kumar Bikramjit Basuet,Joze Vizintin and Mitjan Kalina , Tribochemistry in sliding wear of TiCN-Ni-based cermets, J. Mater. Res., 23 (5) (2008) 1214-1227.

DOI: 10.1557/jmr.2008.0165

Google Scholar

[13] F. Qi, S. Kang, a study on microstructural changes in Ti(CN)-NbC-Ni cermets. Mater. Sci. Eng., A 251, 276 (1998) 276-285.

DOI: 10.1016/s0921-5093(98)00609-1

Google Scholar

[14] H. O. Pierson, in: Handbook of refractory carbides and nitrides; Properties, Characteristics, Processing and Applications, (Noyes Publications, Westwood, New Jersey, U.S.A., 1996) p.93.

Google Scholar

[15] A. Bock, W.D. Schubert, B. Lux, Inhibition of Grain Growth on Submicron Cemented Carbides. Powder Metall. Int. 24 (1992) 20-26.

Google Scholar

[16] R.K. Sadangi, L.E. McCandlish, B.H. Kear, P. Seegopaul, Grain Growth Inhibition in Liquid Phase Sintered Nanophase WC/Co Alloys. Int. J. Powder. Met. 35 (1999) 27-33.

Google Scholar

[17] B. Wittmann, W.D. Schubert, B. Lux, WC Grain Growth and Grain Growth Inhibition in Nickel and Iron Binder Hardmetals. Int. J. Refract. Met. Hard. Mater. 20 (2002) 51-60.

DOI: 10.1016/s0263-4368(01)00070-1

Google Scholar

[18] S. Ahn, S. Kang, effect of various carbides on the dissolution behavior of Ti(C0.7N0.3) in a Ti(C0.7N0.3)-30 Ni system. Int. J. Refract. Met. Hard Mater. 19 (2001) 539-545.

DOI: 10.1016/s0263-4368(01)00044-0

Google Scholar

[19] W.T. Kwon, J.S. Park, S.W. Kim, and S. Kang: Effect of WC and group IV carbides on the cutting performance of Ti(C,N) cermet tools. Int. J. Machine Tools Manufact. 44 (2004) 341-346.

DOI: 10.1016/j.ijmachtools.2003.10.023

Google Scholar

[20] M. Woydt, H. Mohrbacher, Friction and wear of binderless niobium carbide, Wear 306 (2013) 126-130.

DOI: 10.1016/j.wear.2013.07.013

Google Scholar

[21] M. Woydt, H. Mohrbacher, The tribological and mechanical properties of niobium carbides (NbC) bonded with cobalt or Fe3Al, Wear 321 (2014) 1-7.

DOI: 10.1016/j.wear.2014.09.007

Google Scholar

[22] S.G. Huang, L. Li, O. Van der Biest, J. Vleugels. Influence of WC addition on the microstructure and mechanical properties of NbC-Co cermets. J. Alloys Compd. 430 (2007) 158-164.

DOI: 10.1016/j.jallcom.2006.05.015

Google Scholar

[23] S.G. Huang, J. Vleugels, H. Mohrbacher, M. Woydt, Microstructure and tribological performance of NbC-Ni cermets modified by VC and Mo2C. Int. J. Refract. Met. Hard Mater. 66 (2017) 188-197.

DOI: 10.1016/j.ijrmhm.2017.03.012

Google Scholar

[24] S.G. Huang, J. Vleugels, H. Mohrbacher, M. Woydt, NbC grain growth control and mechanical properties of Ni bonded NbC cermets prepared by vacuum liquid phase sintering. Int. J. Refract. Met. Hard Mater. 72 (2018) 63-70.

DOI: 10.1016/j.ijrmhm.2017.12.013

Google Scholar

[25] H.M. Rietveld, A profile refinement method for nuclear and magnetic structures. J. Appl. Crystallogr. 2 (1969) 65-71.

Google Scholar

[26] D.K. Shetty, I.G. Wright, P.N. Mincer, A.H. Clauer, Indentation fracture of WC-Co cermets. J. Mater. Res., 20 (1985) 1873-1882.

DOI: 10.1007/bf00555296

Google Scholar

[27] Haksung Moon, Byung-Ki Kim, Suk-Joong L. Kang, Growth mechanism of round-edged NbC grains in Co liquid. Acta Materialia, 49(7) (2001) 1293-1299.

DOI: 10.1016/s1359-6454(00)00394-3

Google Scholar

[28] F. Delannay, L. Froyen, A. Deruyttere, Review: The wetting of solids by molten metals and its relation to the preparation of metal-matrix composites. J. Mater. Sci. 22 (1987) 1-16.

DOI: 10.1007/bf01160545

Google Scholar

[29] https://www.webelements.com.

Google Scholar

[30] Q.Q. Yang, W.H. Xiong, M. Zhang, B. Huang, S. Chen. Microstructure and mechanical properties of Mo-free Ti(C,N)-based cermets with Ni-xCr binders. J. Alloy. Compd. 636 (2015) 270-274.

DOI: 10.1016/j.jallcom.2014.11.236

Google Scholar

[31] L. Ramqvist. Variation of hardness, resistivity, and lattice parameter with carbon content of group 5 b metal carbides. Jernkontorets Ann. 152 (1968) 465.

Google Scholar