[1]
A.H. Cottrell. Dislocations and Plastic Flow in Crystals. Oxford University Press, London, (1953).
Google Scholar
[2]
A. Portevin. F. Le Chatelier: Sur un phénomène observé lors de l'essai de traction d'alliages en cours de transformation. Comptes Rendus de l'Académie des Sciences Paris T 176, (1923). pp.507-510.
Google Scholar
[3]
Y. Estrin, L.P. Kubin, Plastic instabilities phenomenology and theory, Materials Science and Engineering, A, 137, 125-134 (1991).
DOI: 10.1016/0921-5093(91)90326-i
Google Scholar
[4]
Z. Kovács, L. Lendvai, G. Vörös. Localized deformation bands in Portevin–Le Châtelier plastic instabilities at a constant stress rate Materials Science and Engineering A, 279 (1–2) (1997), pp.179-184.
DOI: 10.1016/s0921-5093(99)00628-0
Google Scholar
[5]
Ndeye Awa Sene Pascale Balland Khaidre Bouabdallah: Experimental study of Portevin–Le Châtelier bands on tensile and plane strain tensile tests. Archives of Civil and Mechanical Engineering Vol.18, Issue 1 (2018) pp.94-102.
DOI: 10.1016/j.acme.2017.05.005
Google Scholar
[6]
A. Van Den Beukel: On the mechanism of serrated yielding and dynamic strain ageing Acta Metallurgica. Vol. 28, Issue 7. (1980) pp.965-969.
DOI: 10.1016/0001-6160(80)90114-5
Google Scholar
[7]
A. Korbel: Analysis of heterogeneous deformation phenomena in solutions of substitution, Scientific Papers University. Metallurgy and Foundry, 65 (1974) 9-7. (in Polish).
Google Scholar
[8]
N. Ranc. D. Wagner: Some aspects of Portevin–Le Chatelier plastic instabilities investigated by infrared pyrometry. Mater. Sci Eng A 394 (2005). p.87–95.
DOI: 10.1016/j.msea.2004.11.042
Google Scholar
[9]
Z. Kovàcs: PhD.Thesis; Portevin –Le Chatelier plastic instabilities, Eötcös Loránd Univ., Budapest (2002).
Google Scholar
[10]
W.H. Wang, D. Wu, S.S.A. Shah, R.S. Chen, C.S. Lou. The mechanism of critical strain and serration type of the serrated flow in Mg–Nd–Zn alloy Mater. Sci. Eng. A, 649 (2016), pp.214-221.
DOI: 10.1016/j.msea.2015.09.100
Google Scholar
[11]
W Ozgowicz. B. Grzegorczyk. A. Pawełek. A. Piatkowski. Z. Ranachowski: The Portevin–Le Chatelier Effect and Acoustic Emission of Plastic Deformation Archives of Metallurgy and Materials 59 (1), (2014). pp.183-188.
DOI: 10.2478/amm-2014-0029
Google Scholar
[12]
L. Kommel. I. Hussainova. O. Volobueva: Microstructure and properties development of copper during severe plastic deformation. Materials and Design 28 (2007). p.2121–2128.
DOI: 10.1016/j.matdes.2006.05.021
Google Scholar
[13]
L.P. Kubin. Y. Estrin: Evolution of dislocation densities and the critical condition for the Portevin-LeChatelier effect. Acta Metallurgica 38, (1990) pp.697-708.
DOI: 10.1016/0956-7151(90)90021-8
Google Scholar
[14]
L.P. Kubin. Y. Estrin: The critical conditions for jerky flow. Phys. Stat. Sol. (b) 172, (1992) s. 173÷185.
DOI: 10.1002/pssb.2221720117
Google Scholar
[15]
Y. Brechet, Y. Estrin: Pseudo-Portevin-Le Chatelier effect in ordered alloys Scripta Materialia Vol. 35, No.2 (1996) pp.217-223.
DOI: 10.1016/1359-6462(96)00126-1
Google Scholar
[16]
P.G. McCormick: The effect of strain on the ageing time for serrated yielding in an Al-Mg-Si alloy Acta Metallurgica, Vol. 22, Issue 4, (1974) pp.489-493.
DOI: 10.1016/0001-6160(74)90102-3
Google Scholar
[17]
B.J Brindley, P.J Worthington: Serrated yielding in Aluminium-3% Magnesium Acta Metallurgica, Vol.17, Issue 11, (1969) pp.1357-1361.
DOI: 10.1016/0001-6160(69)90153-9
Google Scholar
[18]
B. J. Brindley, P. J. Worthington: Reply to on the grain-size dependence of the activation energy associated with serrated yielding, Scripta Metallurgica, Vol. 4, Issue 4, (1970) pp.295-297.
DOI: 10.1016/0036-9748(70)90124-9
Google Scholar
[19]
P. Penning: Mathematics of the Portevin- LeChatelier effect, Acta Metall. 20, (1972) p.1169.
Google Scholar
[20]
R.C. Picu: Mechanism for the strain rate sensitivity of dilute solid solutions, Acta Materiala, (2004) pp.3447-3458.
DOI: 10.1016/j.actamat.2004.03.042
Google Scholar
[21]
A. Korbel: The structural aspect of the Portevin-Le Chatelier effect in alpha brass Scripta Metallurgica Vol. 8, (1974) pp.609-612.
DOI: 10.1016/0036-9748(74)90004-0
Google Scholar
[22]
Grzegorczyk, B., Effect of PLC in monocrystalline Cu-Zn alloy plastically deformed et elevated temperature, PhD thesis, Silesian Univ. of Technology, Gliwice, (2010) (in Polish).
Google Scholar
[23]
W. Ozgowicz. B. Grzegorczyk. E. Kalinowska-Ozgowicz: The influence of the temperature of tensile test on the structure and plastic properties of copper alloy type CuCr1Zr, Journal of Achievements in Materials and Manufacturing Engineering. 29, Issue 2, (2008).
DOI: 10.5604/01.3001.0010.0978
Google Scholar
[24]
W. Ozgowicz. B. Grzegorczyk. The influence of the temperature of plastic deformation on the structure and mechanical properties of copper alloys CuCo2Be and CuCo1Ni1Be, Archives of Materials Science and Engineering, Volume 39, Issue 1, (2009).
DOI: 10.5604/01.3001.0010.0978
Google Scholar
[25]
B. Grzegorczyk. W. Ozgowicz: Influence of plastic deformation temperature on the structure and mechanical properties of low-alloy copper alloys with Co, Ni and B. Archives of Materials Science and Engineering 84 (2) (2016) pp.49-57.
DOI: 10.5604/01.3001.0010.0978
Google Scholar