Two-Stepped Synthesis of High Performance Reduced Graphene Oxide Antenna

Article Preview

Abstract:

The paper presents a two-stepped technique to synthesize the Reduced Graphene Oxide (RGO). RGO is a single layer structure of carbon without presence of oxygen group with high level of conductivity (3.38 × 105 s/m). The synthesized graphene is used on low permittivity substrate to realize high performance RGO microstrip patch antenna. The antenna operates in ultra-wide band frequency range from 2.5 GHz to 12.2 GHz with gains between 5.5dB and 14.5dB. Low profile and small size (90 mm × 45 mm) makes the antenna suitable for integration.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 280)

Pages:

134-141

Citation:

Online since:

August 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J. Y. Sze and K. L. Wong, Antennas and Propagation, IEEE Transactions on, Vol. 49 no. 7 (2001), pp.1020-1024.

Google Scholar

[2] A. O. Karilainen, P. M. Ikonen, C. R. Simovski and S. A. Tretyakov, Antennas and Propagation, IEEE Transactions on, Vol. 59 no. 11 (2011), pp.3991-3998.

DOI: 10.1109/tap.2011.2164170

Google Scholar

[3] F. S. G. B. Barnes: Handbook of biological effects of electromagnetic fields. Boca Raton: CRC/Taylor & Francis (2007).

Google Scholar

[4] L. M. Camacho and S. Tjuatja: FDTD simulation of microwave scattering from a lung tumor, in Antennas and Propagation Society International Symposium IEEE, pp.815-818 (2005).

DOI: 10.1109/aps.2005.1552382

Google Scholar

[5] X. N. Low, Z. N. Chen, and S. P. Terence See, IEEE Transactions on Antenna and Propagations, Vol. 57 No. 10 (2009).

Google Scholar

[6] Moon, J. S. and Gaskill, D. K. "Graphene, Vol. 59 No. 10 (2011).

Google Scholar

[7] A. Eesuola1, Y. Chen, and G. Y. Tian, APS/URSI (2011).

Google Scholar

[8] Norfishah Ab Wahab, Zulkifli Bin Maslan, Wan Norsyafizan W. Muhamad, Norhayati Hamzah, Second International Conference on Computational Intelligence, Communication Systems and Networks (2010).

DOI: 10.1109/cicsyn.2010.73

Google Scholar

[9] Amin M. Abbosh, International Journal of Antennas and Propagation, (2008).

Google Scholar

[10] N. Ojaroudi, M. Ojaroudi, F. Geran, and Sh. Amiri, Telfor Journal, Vol. 5 No. 2 (2013).

Google Scholar

[11] H. Attia, L. Yousefi, M. M. Bait-Suwailam, M. S. Boybay and O. M. Ramahi, Antennas and Wireless Propagation Letters IEEE, Vol. 8 (2009) pp.1198-1201.

DOI: 10.1109/lawp.2009.2035149

Google Scholar

[12] Mosallaei, H. and Sarabandi, K, IEEE Transactions on Antennas and Propagation, vol. 52 No. 6 (2004) pp.1558-1567.

Google Scholar

[13] L. David and D. K. Wynants, Process Engineer Taconic ADD (2011).

Google Scholar

[14] Graphene Supermarket, Graphene Coatings/films, Conductive Graphene Sheet, information on https://graphene-supermarket.com/Conductive-Graphene-Sheets.html.

DOI: 10.1021/acsami.7b16500.s001

Google Scholar

[15] C. Isaac, A. J. Luis, P. Wonjun, C. Helin, and P. C. Yong: Raman Spectroscopy of Graphene and Related Materials, Chapter 19, Department of Physics, Purdue University, West Lafayette, IN, US , Birck Nanotechnology Center, Purdue University, West Lafayette, IN, US, School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN, US.

DOI: 10.30919/esmm5f715

Google Scholar

[16] A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, Physical Review Letters (PRL) Vol. 97, 187401 (2006).

DOI: 10.1103/physrevlett.97.187401

Google Scholar