Microstructure, Interfacial IMC and Wettability of Sn-0.7Cu-xZn Solder Alloy

Article Preview

Abstract:

In this study, the effect of Zinc (Zn) addition on microstructure, interfacial IMC and wettability properties of Sn-0.7Cu lead free solder alloy was investigated. The addition of 0.5, 1.0 and 1.5 wt.% Zn into Sn-0.7Cu was developed by using conventional casting method. The result revealed that the addition of Zn has refined the β-Sn phase. The thickness of interfacial IMC decreased with 0.5 wt.% and 1.0 wt.% Zn addition but increased after 1.5 wt.% of Zn was added. The wettability of Sn-0.7Cu also improved by the Zn addition. It can be concluded that a small amount of Zn addition up to 1.0 wt.% decreased the thickness of IMC and improved the wettability. However, when 1.5 wt.% Zn was added, the interfacial IMC and wettability become worse.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 280)

Pages:

157-162

Citation:

Online since:

August 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S.A. Musa, M.A.A. Mohd Salleh, and N. Saud, Adv. Mater. Res. Vol. 795 (2013), pp.518-521.

Google Scholar

[2] M.A.A. Mohd Salleh, S.D. McDonald, Y. Terada, H. Yasuda, and K. Nogita, Mater. Des Vol. 82 (2015), pp.136-147.

Google Scholar

[3] M.A.A. Mohd Salleh, M.H. Hazizi, Z.A. Ahmad, K. Hussin, and K.R. Ahmad, Adv. Mater. Res. Vol. 277 (2011), pp.106-111.

Google Scholar

[4] M.A.A. Mohd Salleh, C.M. Gourlay, J.W. Xian, S.A. Belyakov, H. Yasuda, S.D. McDonald, and K. Nogita, Sci. Rep. Vol. 7 (2017), p.40010.

Google Scholar

[5] M.I.I. Ramli, M.A.A. Mohd Salleh, M.N. Derman, R.M. Said, N.M. Nasir, and N. Saud : Key Eng. Mater. (2016).

Google Scholar

[6] H. Wang, J. Fang, Z. Xu, and X. Zhang, J Mater Sci: Mater Electron. Vol. 26 (2015), pp.3589-3595.

Google Scholar

[7] Y. Gao, J. Hui, X. Sun, F. Zhao, J. Zhao, C. Cheng, Z. Luo, and L. Wang, Proc. Eng. Vol. 16 (2011), pp.807-811.

Google Scholar

[8] H.R. Kotadia, A. Rahnama, A. Das, S. Sridhar, and S.H. Mannan, Proceding of the 6th Decennial International Conference on Solidification Processing. pp.175-179.

Google Scholar

[9] H.Y. Song, Q.S. Zhu, Z.G. Wang, J.K. Shang, and M. Lu, Mater. Sci. Eng. A. Vol. 527 (2010), pp.1343-1350.

Google Scholar

[10] E. Siahaan, IOP Conference Series: Mater. Sci. Eng. Vol. 237 (2017), p.012044.

Google Scholar

[11] G. Zeng, S.D. McDonald, D. Mu, Y. Terada, H. Yasuda, Q. Gu, M.M. Salleh, and K. Nogita, J. Alloys Compd. Vol. 685 (2016), pp.471-482.

Google Scholar

[12] F. Somidin, M.A.A. Mohd Salleh, and K.R. Ahmad, Adv. Mater. Res. Vol. 620 (2013), pp.105-111.

Google Scholar

[13] G. Zeng, S.D. McDonald, Q. Gu, Y. Terada, K. Uesugi, H. Yasuda, and K. Nogita, Acta. Mater. Vol. 83 (2015), pp.357-371.

Google Scholar

[14] F. Wang, X. Ma, and Y. Qian, Scr. Mater. Vol. 55 (2005), pp.699-702.

Google Scholar

[15] M.A.A. Mohd Salleh, S. McDonald, and K. Nogita, App. Mechanics and Materials. Vol. 421 (2013), pp.260-266.

Google Scholar

[16] T. El-Ashram and R.M. Shalaby, J. Electron Mater. Vol. 34(2) (2005), pp.212-215.

Google Scholar

[17] L. Zhang, J.G. Han, C.W. He, and Y.H. Guo, J Mater Sci: Mater Electron. Vol. 23 (2012), p.1950-(1956).

Google Scholar

[18] M. Kamal and E.S. Gouda, J. Mater. Sci. Mater. Electron. Vol. 19(1) (2008), pp.81-84.

Google Scholar