[1]
Y. N. Xu, W. Y. Ching, Electronic Structure of Yttrium Aluminum Garnet (Y3Al5O12), Phys. Rev. B. 59(16) (1999) 10530-10535.
Google Scholar
[2]
Y. S. Zhang, Y. B. Zhang, Y. J. Zhang, H. G. Gong, Synthesis and characteristics of fine crystalline LuAG:Ce phosphors by microwave-induced solution combustion method, J. Lumin. 181(2017) 360-366.
DOI: 10.1016/j.jlumin.2016.09.048
Google Scholar
[3]
Y. Zorenko, V. Gorbenko, T. Voznyak, M. Nikl, A. Beitlerova, V. Jary,Bi3+-Ce3+ energy transfer and luminescent properties of LuAG:Bi,Ce and YAG:Bi,Ce single crystalline films, J. Lumin. 134 (2013) 539-543.
DOI: 10.1016/j.jlumin.2012.07.032
Google Scholar
[4]
H.L. Li, X.J. Liu, R.J. Xie, G.H. Zhou, H. Naoto, X. P. Pu, L. P. Huang, Cerium-Doped Lutetium Aluminum Garnet Phosphors and Optically Transparent Ceramics Prepared from Powder Precursors by a Urea Homogeneous Precipitation Method, Jpn. J.Appl. Phys. 47(3) (2008).
DOI: 10.1143/jjap.47.1657
Google Scholar
[5]
H. L. Li, X. J. Liu, Fabrication of Transparent Cerium-Doped Lutetium Aluminum Garnet Ceramics by Co-Precipitation Routes, J. Am. Ceram. Soc. 89(7) (2006) 2356-2358.
DOI: 10.1111/j.1551-2916.2006.01036.x
Google Scholar
[6]
Z. F. Wang, M. Xu, W. P. Zhang, M. Yin, Synthesis and luminescent properties of nano-scale LuAG:RE3+ (Ce, Eu) phosphors prepared by co-precipitation method, J. Lumin. 122-123(1) (2007) 437-439.
DOI: 10.1016/j.jlumin.2006.01.199
Google Scholar
[7]
J. G. Li, J. K. Li, Q. Zhu, X. J. Wang, X. D. Li, X. D. Sun, Y. Sakka, Photoluminescent and cathodoluminescent performances of Tb3+ in Lu3+-stabilized gadolinium aluminate garnet solid-solutions of [(Gd1-xLux)1-yTby]3Al5O12, RSC Adv. 5(2015).
DOI: 10.1039/c5ra06564j
Google Scholar
[8]
J. K. Li, X. Teng, B. Q. Cao, Z. M. Liu, Synthesis and Property of Spherical Lu3Al5O12:Eu3+ Phosphor, J. Inorg. Mater. 31(6) (2016) 634-640.
Google Scholar
[9]
J. K. Li, Z. P. Liu, J. F. Luo, X. B. Ma, X. Teng, Z. M. Liu, Investigation on the preparation and properties of monodispersed spherical Y2O3:Dy3+ phosphor, Key Eng. Mater. 726 (2017) 255-260.
Google Scholar
[10]
X. L. Wu, J. G. Li, Q. Zhu, J. K. Li, R. Z. Ma, T. Sasaki, X. D. Li, X. D. Sun, Y. Sakka, The effects of Gd3+ substitution on the crystal structure, site symmetry, and photoluminescence of Y/Eu layered rare-earth hydroxide (LRH) nanoplate, Dalton Trans. 41 (6) (2012).
DOI: 10.1039/c1dt11332a
Google Scholar
[11]
E. Matijević, W. P. Hsu, Preparation and properties of monodispersed colloidal particles of lanthanide compounds: I. Gadolinium, Europium, Terbium, Samarium, and Cerium (III), J. Colloid Interface Sci. 118 (2) (1987) 506-523.
DOI: 10.1016/0021-9797(87)90486-3
Google Scholar
[12]
Z. Dega-Szafran, G. Dutkiewicz, Z. Kosturkiewicz, M. Szafran, Structure of complex of N-methylpiperidine betaine with p-hydroxybenzoic acid studied by X-ray, FT-IR and DFT methods, J. Mol. Struct. 875 (1-3) (2008) 346-353.
DOI: 10.1016/j.molstruc.2007.05.013
Google Scholar
[13]
J. G. Li, T. Ikegami, J. H. Lee, T. Mori, Y. Yajima, Co-precipitation synthesis and sintering of yttrium aluminum garnet (YAG) powders: the effect of precipitant, J. Eur. Ceram. Soc. 20 (14-15) (2000) 2395-2405.
DOI: 10.1016/s0955-2219(00)00116-3
Google Scholar
[14]
J. K. Li, J. G. Li, Z. J. Zhang, X. L. Wu, S. H. Liu, X. D. Li, X. D. Sun, Y. Sakka, Gadolinium aluminate garnet (Gd3Al5O12): crystal structure stabilization via lutetium doping and properties of the (Gd1-xLux)3Al5O12 solid solutions (x=0-0.5), J. Am. Ceram. Soc. 95 (3) (2012).
DOI: 10.1111/j.1551-2916.2011.04991.x
Google Scholar
[15]
X. Teng, J. K. Li, G. B. Duan, Z. M. Liu, Development of Tb3+ activated gadolinium aluminate garnet (Gd3Al5O12) as highly efficient green-emitting phosphors, J. Lumin. 179 (2016): 165-170.
DOI: 10.1016/j.jlumin.2016.06.029
Google Scholar
[16]
X. Teng, B. Li, J. K. Li, G. B. Duan, Z. M. Liu, Investigation on Synthesis and Property of Tb3+/Dy3+ Co-Doped Gd3Al5O12 Phosphor, Key Eng. Mater. 726 (2017) 261-265.
Google Scholar
[17]
J. K. Li, J. G. Li, X. Li, X. Sun, Tb3+/Eu3+ cooping of Lu 3+-stabilized Gd3Al5O12 for tunable photoluminescence via efficient energy transfer, J. Alloys Compd. 670 (2016) 161-169.
DOI: 10.1016/j.jallcom.2016.02.013
Google Scholar
[18]
Z. Xu, J. Yang, Z. Hou, C. Li, C. Zhang, S. Huang, J. Lin, Hydrothermal synthesis and luminescent properties of Y2O3:Tb3+ and Gd2O3:Tb3+ microrods, Mater. Res. Bull. 44 (2009) 1850-1857.
DOI: 10.1016/j.materresbull.2009.05.017
Google Scholar
[19]
S. Seo, H. Yang, P. H. Holloway, Controlled shape growth of Eu- or Tb-doped luminescent Gd2O3 colloidal nanocrystals, J. Colloid Interf. Sci. 331 (2009) 236-242.
DOI: 10.1016/j.jcis.2008.11.016
Google Scholar
[20]
J. Huan, L. Hu, X. Fang, Dense assembly of Gd2O3:0.05X3+ (X=Eu, Tb) nanorods into nanoscaled thin-films and their photoluminescence properties, ACS Appl. Mater. Interfaces. 6 (2014) 1462-1469.
DOI: 10.1021/am4037417
Google Scholar