Fabrication of YSZ/SNDC Bilayer Electrolytes by Spark Plasma Sintering

Article Preview

Abstract:

Doped ceria has been reported as a promising candidate of electrolyte applicable for solid oxide fuel cells (SOFCs) and oxygen sensors due to its high ionic conductivity at intermediate temperature. However, it suffers from certain limitations including the existence of electronic conductivity at reduced atmosphere, which would thus increase the leakage current in cells, and the low fracture strength. In this work, we fabricated a bilayer electrolyte with samarium and neodymium co-doped ceria (SNDC) and yttrium stabilized zirconia (YSZ) using spark plasma sintering (SPS) method, which possess the advantages of two layers, high conductivity of SNDC and good electron blocking ability of YSZ. Both layers of the specimen we obtained were dense and well crystallized according to the scanning electron microscope (SEM) and X-ray diffraction (XRD). The bilayer electrolyte exhibits improved ionic conductivity than YSZ with the value of 1.7 S/cm at 550.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 281)

Pages:

748-753

Citation:

Online since:

August 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J. Qian, Z. Tao, J. Xiao, G. Jiang, W. Liu, Performance improvement of ceria-based solid oxide fuel cells with yttria-stabilized zirconia as an electronic blocking layer by pulsed laser deposition, Int. J. Hydrogen Energy, 38 (2013) 2407.

DOI: 10.1016/j.ijhydene.2012.11.112

Google Scholar

[2] A. Midilli, U. Akbulut, I. Dincer, A parametric study on exergetic performance of a YSZ electrolyte supported SOFC stack, International Journal of Exergy, 24 (2017) 173.

DOI: 10.1504/ijex.2017.10008595

Google Scholar

[3] B. C. Steele, A. Heinzel, Materials for fuel-cell technologies, Nature, 414 (2001) 345.

Google Scholar

[4] F. M. L. Figueiredo, F. M. B. Marques, Electrolytes for solid oxide fuel cells, Wires. Energy Environ., 2 (2013) 52.

Google Scholar

[5] E. D. Wachsman, K. T. Lee, Lowering the temperature of solid oxide fuel cells, Science, 334 (2011) 935.

DOI: 10.1126/science.1204090

Google Scholar

[6] L. H. Luo, Y. Lang, Z. Z. Huang, L. Cheng, J. J. Shi, Fabrication of YSZ film by aqueous tape casting using PVA-B1070 cobinder for IT-SOFC, Key Eng. Mater., 434 (2010) 735.

DOI: 10.4028/www.scientific.net/kem.434-435.735

Google Scholar

[7] R. O'hayre, S.-W. Cha, F. B. Prinz, W. Colella, Fuel cell fundamentals, third ed, John Wiley & Sons, (2016).

Google Scholar

[8] H. Tuller, A. Nowick, Doped ceria as a solid oxide electrolyte, J. Electrochem. Soc., 122 (1975) 255.

DOI: 10.1149/1.2134190

Google Scholar

[9] W. Liu, B. Li, H. Liu, W. Pan, Electrical conductivity of textured Sm3+ and Nd3+ Co-doped CeO2 thin-film electrolyte, Electrochim. Acta, 56 (2011) 3334.

DOI: 10.1016/j.electacta.2011.01.018

Google Scholar

[10] Y. Liu, B. Li, X. Wei, W. Pan, Citric-Nitrate Combustion Synthesis and Electrical Conductivity of the Sm3+ and Nd3+ Co-Doped Ceria Electrolyte, J. Am. Ceram. Soc., 91 (2008) 3926.

DOI: 10.1111/j.1551-2916.2008.02748.x

Google Scholar

[11] Y. C. Wu, C. C. Lin, The microstructures and property analysis of aliovalent cations (Sm3+, Mg2+, Ca2+, Sr2+, Ba2+) co-doped ceria-base electrolytes after an aging treatment, Int. J. Hydrogen Energy, 39 (2014) 7988.

DOI: 10.1016/j.ijhydene.2014.03.063

Google Scholar

[12] R. t. Shannon, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides, Acta Crystallogr. A, 32 (1976) 751.

DOI: 10.1107/s0567739476001551

Google Scholar

[13] Z. Fu, Q. Sun, D. Ma, N. Zhang, Y. An, Z. Yang, Effects of Sm doping content on the ionic conduction of CeO2 in SOFCs from first principles, Appl. Phys. Lett., 111 (2017) 023903.

DOI: 10.1063/1.4993897

Google Scholar

[14] K. Eguchi, T. Setoguchi, T. Inoue, H. Arai, Electrical properties of ceria-based oxides and their application to solid oxide fuel cells, Solid State Ionics, 52 (1992) 165.

DOI: 10.1016/0167-2738(92)90102-u

Google Scholar

[15] S. H. Chan, X. J. Chen, K. A. Khor, A simple bilayer electrolyte model for solid oxide fuel cells, Solid State Ionics, 158 (2003) 29.

DOI: 10.1016/s0167-2738(02)00758-0

Google Scholar

[16] H. T. Lim, A. V. Virkar, Measurement of oxygen chemical potential in Gd2O3-doped ceria-Y2O3-stabilized zirconia bi-layer electrolyte, anode-supported solid oxide fuel cells, J. Power Sources, 192 (2009) 267.

DOI: 10.1016/j.jpowsour.2009.03.035

Google Scholar

[17] A. Tsoga, A. Gupta, A. Naoumidis, D. Skarmoutsos, P. Nikolopoulos, Performance of a double-layer CGO/YSZ electrolyte for solid oxide fuel cells, Ionics, 4 (1998) 234.

DOI: 10.1007/bf02375951

Google Scholar

[18] Y. C. Wang, Z. Y. Fu, W. M. Wang, Numerical Simulation of the Temperature Field in Sintering of BN by SPS, Key Eng. Mater., 249 (2003) 471.

DOI: 10.4028/www.scientific.net/kem.249.471

Google Scholar

[19] Z. Munir, U. Anselmi-Tamburini, M. Ohyanagi, The effect of electric field and pressure on the synthesis and consolidation of materials: A review of the spark plasma sintering method, Journal of Materials Science, 41 (2006) 763.

DOI: 10.1007/s10853-006-6555-2

Google Scholar

[20] X. Chen, K. Khor, S. Chan, L. Yu, Overcoming the effect of contaminant in solid oxide fuel cell (SOFC) electrolyte: spark plasma sintering (SPS) of 0.5 wt.% silica-doped yttria-stabilized zirconia (YSZ), Materials Science and Engineering: A, 374 (2004).

DOI: 10.1016/j.msea.2003.12.028

Google Scholar

[21] L. A. Chick, L. R. Pederson, G. D. Maupin, J. L. Bates, L. E. Thomas, G. J. Exarhos, Glycine-nitrate combustion synthesis of oxide ceramic powders, Mater. Lett., 10 (1990) 6.

DOI: 10.1016/0167-577x(90)90003-5

Google Scholar

[22] V. Singh, S. Babu, A. S. Karakoti, A. Agarwal, S. Seal, Effect of submicron grains on ionic conductivity of nanocrystalline doped ceria, J Nanosci. Nanotech., 10 (2010) 6495.

DOI: 10.1166/jnn.2010.2523

Google Scholar

[23] A. Tsoga, A. Naoumidis, A. Gupta, D. Stöver, Microstructure and interdiffusion phenomena in YSZ-CGO composite electrolyte, Mater. Sci. Forum, 308 (1999) 794.

DOI: 10.4028/www.scientific.net/msf.308-311.794

Google Scholar