Electronic Structure and Transport Properties of La2Zr2O7 Pyrochlore from First Principles

Article Preview

Abstract:

The first principle calculation as well as the Boltzmann transport calculation have been employed to study the high temperature electronic transport properties of pyrochlore La2Zr2O7. Combing constant scattering time approximation and experiment data, the electronic thermal conductivity and electron concentration are calculated as a function of temperature. The electronic thermal conductivity is 2.6×10-4 W/(m.s) at 1270K and 7.2×10-3 W/(m.s) at 1770K. The electron concentration increase rapidly with when the temperature is above 1600K.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 281)

Pages:

767-773

Citation:

Online since:

August 2018

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] C.G. Levi, Emerging materials and processes for thermal barrier systems, Current Opinion in Solid State and Materials Science 8(1) (2004) 77-91.

DOI: 10.1016/j.cossms.2004.03.009

Google Scholar

[2] X.K. Sun, G.H. Wang, S.C. Zhang, H.R. Sun, K. Fang, Y.F. Chen, Preparation and Microstructure of (La0.5Sm0.5)2(Zr0.7Ce0.3)2O7 Ceramics Prepared by Chemical Coprecipitation Method, Key Engineering Materials 697 (2016) 89-92.

Google Scholar

[3] J.L. Shi, Z.X. Qu, Q. Wang, Influence of Temperature on the Order-Disorder Transition in Gd2Zr2O7, Key Engineering Materials 697 (2016) 386-389.

Google Scholar

[4] J. Wu, X. Wei, N.P. Padture, P.G. Klemens, M. Gell, E. García, P. Miranzo, M.I. Osendi, Low-Thermal-Conductivity Rare-Earth Zirconates for Potential Thermal-Barrier-Coating Applications, Journal of the American Ceramic Society 85(12) (2002).

DOI: 10.1111/j.1151-2916.2002.tb00574.x

Google Scholar

[5] N.P. Bansal, D. Zhu, Effects of doping on thermal conductivity of pyrochlore oxides for advanced thermal barrier coatings, Materials Science and Engineering: A 459(1) (2007) 192-195.

DOI: 10.1016/j.msea.2007.01.069

Google Scholar

[6] Q. Xu, W. Pan, J. Wang, C. Wan, L. Qi, H. Miao, K. Mori, T. Torigoe, Rare-Earth Zirconate Ceramics with Fluorite Structure for Thermal Barrier Coatings, Journal of the American Ceramic Society 89(1) (2006) 340-342.

DOI: 10.1111/j.1551-2916.2005.00667.x

Google Scholar

[7] S.X. Wang, B.D. Begg, L.M. Wang, R.C. Ewing, W.J. Weber, K.V.G. Kutty, Radiation stability of gadolinium zirconate: A waste form for plutonium disposition, Journal of Materials Research 14(12) (1999) 4470-4473.

DOI: 10.1557/jmr.1999.0606

Google Scholar

[8] A. Ali Biswas, Y.M. Jana, Estimation of single-ion anisotropies, crystal-field and exchange interactions in Gd-based frustrated pyrochlore anti-ferromagnets Gd2M2O7 (M=Ti, Sn, Hf, Zr), Journal of Magnetism and Magnetic Materials 323(24) (2011).

DOI: 10.1016/j.jmmm.2011.07.007

Google Scholar

[9] W. Ren, S. Trolier-McKinstry, C.A. Randall, T.R. Shrout, Bismuth zinc niobate pyrochlore dielectric thin films for capacitive applications, Journal of Applied Physics 89(1) (2001) 767-774.

DOI: 10.1063/1.1328408

Google Scholar

[10] S.A. Kramer, H.L. Tuller, A novel titanate-based oxygen ion conductor: Gd2Ti2O7, Solid State Ion. 82(1) (1995) 15-23.

DOI: 10.1016/0167-2738(95)00156-z

Google Scholar

[11] R.O. Pohl, X. Liu, E. Thompson, Low-temperature thermal conductivity and acoustic attenuation in amorphous solids, Reviews of Modern Physics 74(4) (2002) 991-1013.

DOI: 10.1103/revmodphys.74.991

Google Scholar

[12] R. Vaßen, M.O. Jarligo, T. Steinke, D.E. Mack, D. Stöver, Overview on advanced thermal barrier coatings, Surface and Coatings Technology 205(4) (2010) 938-942.

DOI: 10.1016/j.surfcoat.2010.08.151

Google Scholar

[13] Y. Zhang, Y.C. Zhang, X.L. Su, M.Q. Xiang, Preparation and Characterization of Bi2Ti2O7 Microwave Dielectric Ceramics by Citrate Sol-Gel Method, Key Engineering Materials 697 (2016) 219-222.

DOI: 10.4028/www.scientific.net/kem.697.219

Google Scholar

[14] L. Fan, Y. Xie, X.Y. Shu, Fabrication of Pyrochlore Gd2Zr2O7 by High Temperature Solid State Reaction, Advanced Materials Research 1061-1062 (2015) 87-90.

DOI: 10.4028/www.scientific.net/amr.1061-1062.87

Google Scholar

[15] T.T. Ma, R.S. Zhou, X. Li, Synthesis of Pyrochlore-Type K2Ta2O6 with High Photocatalytic Activity for Dye Degradation, Key Engineering Materials 680 (2016) 203-207.

DOI: 10.4028/www.scientific.net/kem.680.203

Google Scholar

[16] J. Feng, B. Xiao, C.L. Wan, Z.X. Qu, Z.C. Huang, J.C. Chen, R. Zhou, W. Pan, Electronic structure, mechanical properties and thermal conductivity of Ln2Zr2O7 (Ln=La, Pr, Nd, Sm, Eu and Gd) pyrochlore, Acta Materialia 59(4) (2011) 1742-1760.

DOI: 10.1016/j.actamat.2010.11.041

Google Scholar

[17] G. Lan, B. Ouyang, J. Song, The role of low-lying optical phonons in lattice thermal conductance of rare-earth pyrochlores: A first-principle study, Acta Materialia 91 (2015) 304-317.

DOI: 10.1016/j.actamat.2015.03.004

Google Scholar

[18] L.Q. An, D.S. Wang, R.H. Fan, L.H. Dong, Dielectric and Conduction Properties of Lu3NbO7 Transparent Ceramic, Materials Science Forum 898 (2017) 1681-1685.

Google Scholar

[19] G. Kresse, J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Physical Review B 54(16) (1996) 11169-11186.

DOI: 10.1103/physrevb.54.11169

Google Scholar

[20] G. Kresse, J. Hafner, Ab initio, Physical Review B 47(1) (1993) 558-561.

Google Scholar

[21] J.P. Perdew, K. Burke, M. Ernzerhof, Generalized Gradient Approximation Made Simple, Physical Review Letters 77(18) (1996) 3865-3868.

DOI: 10.1103/physrevlett.77.3865

Google Scholar

[22] H.J. Monkhorst, J.D. Pack, Special points for Brillouin-zone integrations, Physical Review B 13(12) (1976) 5188-5192.

DOI: 10.1103/physrevb.13.5188

Google Scholar

[23] G.K.H. Madsen, D.J. Singh, BoltzTraP. A code for calculating band-structure dependent quantities, Computer Physics Communications 175(1) (2006) 67-71.

DOI: 10.1016/j.cpc.2006.03.007

Google Scholar

[24] Y. Tabira, R.L. Withers, T. Yamada, N. Ishizawa, Annular dynamical disorder of the rare earth ions in a La2Zr2O7 pyrochlore via single crystal synchrotron X-ray diffraction, Zeitschrift für Kristallographie - Crystalline Materials, 2001, p.92.

DOI: 10.1524/zkri.216.2.92.20338

Google Scholar

[25] D. Chen, R. Xu, Hydrothermal Synthesis and Characterization of La2M2O7 (M = Ti, Zr) Powders, Materials Research Bulletin 33(3) (1998) 409-417.

DOI: 10.1016/s0025-5408(97)00242-0

Google Scholar

[26] S.S. Subramanian, B. Natesan, Magnetic Ground State and Electronic Structure Calculations of PbMnO3 Using DFT, Advanced Materials Research 895 (2014) 420-423.

DOI: 10.4028/www.scientific.net/amr.895.420

Google Scholar

[27] P. Entel, A. Talapatra, R. Arroyave, N. Singh, M. Gruner, R. Dronskowski, D. Bogdanovski, A. Hucht, First-Principles and Monte Carlo Studies of Magnetocaloric Effects, Advances in Science and Technology 97 (2017) 124-133.

DOI: 10.4028/www.scientific.net/ast.97.124

Google Scholar

[28] A.F. May, D.J. Singh, G.J. Snyder, Influence of band structure on the large thermoelectric performance of lanthanum telluride, Physical Review B 79(15) (2009) 153101.

DOI: 10.1103/physrevb.79.153101

Google Scholar

[29] D.J. Singh, Doping-dependent thermopower of PbTe from Boltzmann transport calculations, Physical Review B 81(19) (2010) 195217.

DOI: 10.1103/physrevb.81.195217

Google Scholar

[30] D.J. Singh, I.I. Mazin, Calculated thermoelectric properties of La-filled skutterudites, Physical Review B 56(4) (1997) R1650-R1653.

DOI: 10.1103/physrevb.56.r1650

Google Scholar

[31] Y. Matsumura, M. Yoshinaka, K. Hirota, O. Yamaguchi, Formation and sintering of La2Zr2O7 by the hydrazine method, Solid State Communications 104(6) (1997) 341-345.

DOI: 10.1016/s0038-1098(97)00332-3

Google Scholar