[1]
C.G. Levi, Emerging materials and processes for thermal barrier systems, Current Opinion in Solid State and Materials Science 8(1) (2004) 77-91.
DOI: 10.1016/j.cossms.2004.03.009
Google Scholar
[2]
X.K. Sun, G.H. Wang, S.C. Zhang, H.R. Sun, K. Fang, Y.F. Chen, Preparation and Microstructure of (La0.5Sm0.5)2(Zr0.7Ce0.3)2O7 Ceramics Prepared by Chemical Coprecipitation Method, Key Engineering Materials 697 (2016) 89-92.
Google Scholar
[3]
J.L. Shi, Z.X. Qu, Q. Wang, Influence of Temperature on the Order-Disorder Transition in Gd2Zr2O7, Key Engineering Materials 697 (2016) 386-389.
Google Scholar
[4]
J. Wu, X. Wei, N.P. Padture, P.G. Klemens, M. Gell, E. García, P. Miranzo, M.I. Osendi, Low-Thermal-Conductivity Rare-Earth Zirconates for Potential Thermal-Barrier-Coating Applications, Journal of the American Ceramic Society 85(12) (2002).
DOI: 10.1111/j.1151-2916.2002.tb00574.x
Google Scholar
[5]
N.P. Bansal, D. Zhu, Effects of doping on thermal conductivity of pyrochlore oxides for advanced thermal barrier coatings, Materials Science and Engineering: A 459(1) (2007) 192-195.
DOI: 10.1016/j.msea.2007.01.069
Google Scholar
[6]
Q. Xu, W. Pan, J. Wang, C. Wan, L. Qi, H. Miao, K. Mori, T. Torigoe, Rare-Earth Zirconate Ceramics with Fluorite Structure for Thermal Barrier Coatings, Journal of the American Ceramic Society 89(1) (2006) 340-342.
DOI: 10.1111/j.1551-2916.2005.00667.x
Google Scholar
[7]
S.X. Wang, B.D. Begg, L.M. Wang, R.C. Ewing, W.J. Weber, K.V.G. Kutty, Radiation stability of gadolinium zirconate: A waste form for plutonium disposition, Journal of Materials Research 14(12) (1999) 4470-4473.
DOI: 10.1557/jmr.1999.0606
Google Scholar
[8]
A. Ali Biswas, Y.M. Jana, Estimation of single-ion anisotropies, crystal-field and exchange interactions in Gd-based frustrated pyrochlore anti-ferromagnets Gd2M2O7 (M=Ti, Sn, Hf, Zr), Journal of Magnetism and Magnetic Materials 323(24) (2011).
DOI: 10.1016/j.jmmm.2011.07.007
Google Scholar
[9]
W. Ren, S. Trolier-McKinstry, C.A. Randall, T.R. Shrout, Bismuth zinc niobate pyrochlore dielectric thin films for capacitive applications, Journal of Applied Physics 89(1) (2001) 767-774.
DOI: 10.1063/1.1328408
Google Scholar
[10]
S.A. Kramer, H.L. Tuller, A novel titanate-based oxygen ion conductor: Gd2Ti2O7, Solid State Ion. 82(1) (1995) 15-23.
DOI: 10.1016/0167-2738(95)00156-z
Google Scholar
[11]
R.O. Pohl, X. Liu, E. Thompson, Low-temperature thermal conductivity and acoustic attenuation in amorphous solids, Reviews of Modern Physics 74(4) (2002) 991-1013.
DOI: 10.1103/revmodphys.74.991
Google Scholar
[12]
R. Vaßen, M.O. Jarligo, T. Steinke, D.E. Mack, D. Stöver, Overview on advanced thermal barrier coatings, Surface and Coatings Technology 205(4) (2010) 938-942.
DOI: 10.1016/j.surfcoat.2010.08.151
Google Scholar
[13]
Y. Zhang, Y.C. Zhang, X.L. Su, M.Q. Xiang, Preparation and Characterization of Bi2Ti2O7 Microwave Dielectric Ceramics by Citrate Sol-Gel Method, Key Engineering Materials 697 (2016) 219-222.
DOI: 10.4028/www.scientific.net/kem.697.219
Google Scholar
[14]
L. Fan, Y. Xie, X.Y. Shu, Fabrication of Pyrochlore Gd2Zr2O7 by High Temperature Solid State Reaction, Advanced Materials Research 1061-1062 (2015) 87-90.
DOI: 10.4028/www.scientific.net/amr.1061-1062.87
Google Scholar
[15]
T.T. Ma, R.S. Zhou, X. Li, Synthesis of Pyrochlore-Type K2Ta2O6 with High Photocatalytic Activity for Dye Degradation, Key Engineering Materials 680 (2016) 203-207.
DOI: 10.4028/www.scientific.net/kem.680.203
Google Scholar
[16]
J. Feng, B. Xiao, C.L. Wan, Z.X. Qu, Z.C. Huang, J.C. Chen, R. Zhou, W. Pan, Electronic structure, mechanical properties and thermal conductivity of Ln2Zr2O7 (Ln=La, Pr, Nd, Sm, Eu and Gd) pyrochlore, Acta Materialia 59(4) (2011) 1742-1760.
DOI: 10.1016/j.actamat.2010.11.041
Google Scholar
[17]
G. Lan, B. Ouyang, J. Song, The role of low-lying optical phonons in lattice thermal conductance of rare-earth pyrochlores: A first-principle study, Acta Materialia 91 (2015) 304-317.
DOI: 10.1016/j.actamat.2015.03.004
Google Scholar
[18]
L.Q. An, D.S. Wang, R.H. Fan, L.H. Dong, Dielectric and Conduction Properties of Lu3NbO7 Transparent Ceramic, Materials Science Forum 898 (2017) 1681-1685.
Google Scholar
[19]
G. Kresse, J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Physical Review B 54(16) (1996) 11169-11186.
DOI: 10.1103/physrevb.54.11169
Google Scholar
[20]
G. Kresse, J. Hafner, Ab initio, Physical Review B 47(1) (1993) 558-561.
Google Scholar
[21]
J.P. Perdew, K. Burke, M. Ernzerhof, Generalized Gradient Approximation Made Simple, Physical Review Letters 77(18) (1996) 3865-3868.
DOI: 10.1103/physrevlett.77.3865
Google Scholar
[22]
H.J. Monkhorst, J.D. Pack, Special points for Brillouin-zone integrations, Physical Review B 13(12) (1976) 5188-5192.
DOI: 10.1103/physrevb.13.5188
Google Scholar
[23]
G.K.H. Madsen, D.J. Singh, BoltzTraP. A code for calculating band-structure dependent quantities, Computer Physics Communications 175(1) (2006) 67-71.
DOI: 10.1016/j.cpc.2006.03.007
Google Scholar
[24]
Y. Tabira, R.L. Withers, T. Yamada, N. Ishizawa, Annular dynamical disorder of the rare earth ions in a La2Zr2O7 pyrochlore via single crystal synchrotron X-ray diffraction, Zeitschrift für Kristallographie - Crystalline Materials, 2001, p.92.
DOI: 10.1524/zkri.216.2.92.20338
Google Scholar
[25]
D. Chen, R. Xu, Hydrothermal Synthesis and Characterization of La2M2O7 (M = Ti, Zr) Powders, Materials Research Bulletin 33(3) (1998) 409-417.
DOI: 10.1016/s0025-5408(97)00242-0
Google Scholar
[26]
S.S. Subramanian, B. Natesan, Magnetic Ground State and Electronic Structure Calculations of PbMnO3 Using DFT, Advanced Materials Research 895 (2014) 420-423.
DOI: 10.4028/www.scientific.net/amr.895.420
Google Scholar
[27]
P. Entel, A. Talapatra, R. Arroyave, N. Singh, M. Gruner, R. Dronskowski, D. Bogdanovski, A. Hucht, First-Principles and Monte Carlo Studies of Magnetocaloric Effects, Advances in Science and Technology 97 (2017) 124-133.
DOI: 10.4028/www.scientific.net/ast.97.124
Google Scholar
[28]
A.F. May, D.J. Singh, G.J. Snyder, Influence of band structure on the large thermoelectric performance of lanthanum telluride, Physical Review B 79(15) (2009) 153101.
DOI: 10.1103/physrevb.79.153101
Google Scholar
[29]
D.J. Singh, Doping-dependent thermopower of PbTe from Boltzmann transport calculations, Physical Review B 81(19) (2010) 195217.
DOI: 10.1103/physrevb.81.195217
Google Scholar
[30]
D.J. Singh, I.I. Mazin, Calculated thermoelectric properties of La-filled skutterudites, Physical Review B 56(4) (1997) R1650-R1653.
DOI: 10.1103/physrevb.56.r1650
Google Scholar
[31]
Y. Matsumura, M. Yoshinaka, K. Hirota, O. Yamaguchi, Formation and sintering of La2Zr2O7 by the hydrazine method, Solid State Communications 104(6) (1997) 341-345.
DOI: 10.1016/s0038-1098(97)00332-3
Google Scholar