Preparation and Lithium Storage Performances of Porous Co3O4 Nanorods

Article Preview

Abstract:

We report on the porous Co3O4 nanorods synthesized by hydrothermal reaction and applied as an anode material for reversible lithium storage. The Co3O4 with porous nanorods structure increases the contact surface, shortens the diffusion path of ion/electron, and improves its structure stability and collaborative electronic transmission. Due to the nanoparticle subunits, the electrodes exhibit high electrochemical performance. Impressively, a high reversible discharge specific capacity of 1105 mAh g-1 is obtained at 200 mA g-1 after 50 cycles. This indicates the excellent potential of porous Co3O4 nanorods as an anode material for lithium ion batteries. Thus, the porous Co3O4 nanorods might open an insight for transition-metal oxides as energy storage materials.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 281)

Pages:

795-800

Citation:

Online since:

August 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] F. Cheng, J. Liang, Z. Tao, J. Chen, Functional materials for rechargeable batteries, Adv. Mater. 23 (2011) 1695-1715.

DOI: 10.1002/adma.201003587

Google Scholar

[2] J.J. Zhang, T. Huang, A.S. Yu, Synthesis and effect of electrode heat-treatment on the superior lithium storage performance of Co3O4 nanoparticles, J. Power Sources 273 (2015) 894-903.

DOI: 10.1016/j.jpowsour.2014.09.136

Google Scholar

[3] P. Poizot, S. Laruelle, S. Grugeon, L. Dupont, J.M. Tarascon, Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries, Nature 407 (2000) 496-499.

DOI: 10.1038/35035045

Google Scholar

[4] N. Tian, A.M. Qin, L. Liao, K.Y. Zhang, M.P. Wang, Synthesis of MoSe2-MoO2@biomass-derived honeycombed carbon composite and its application in LIB, Key Eng. Mater. 727 (2017) 645-652.

DOI: 10.4028/www.scientific.net/kem.727.645

Google Scholar

[5] Y. Feng, X.Y. Yu, U. Paik, Formation of Co3O4 microframes from MOFs with enhanced electrochemical performance for lithium storage and water oxidation, Chem. Commun. 52 (2016) 6269-6272.

DOI: 10.1039/c6cc02093c

Google Scholar

[6] X.Y. Liu, Y.L. Han, Q. Li, D. Pan, SnO2 Nanoparticles for lithium-ion batteries prepared by sol-gel method, Key Eng. Mater. 727 (2017) 718-725.

DOI: 10.4028/www.scientific.net/kem.727.718

Google Scholar

[7] Y. Hou, J.Y. Li, Z.H. Wen, S.M. Cui, C. Yuan, J.H. Chen, Co3O4 nanoparticles embedded in nitrogen-doped porous carbon dodecahedrons with enhanced electrochemical properties for lithium storage and water splitting, Nano Energy 12 (2015) 1-8.

DOI: 10.1016/j.nanoen.2014.11.043

Google Scholar

[8] G.Z. Fang, J. Zhou, Y.S. Cai, S.N. Liu, X.P. Tan, A.Q. Pan, S.Q. Liang, Metal–organic framework-templated two-dimensional hybrid bimetallic metal oxides with enhanced lithium/sodium storage capability, J. Mater. Chem. A 5 (2017) 13983-13993.

DOI: 10.1039/c7ta01961k

Google Scholar

[9] J.M. Xu, J.S. Wu, L.L. Luo, X.Q. Chen, H.B. Qin, V. Dravid, S. Mi, C.L. Jia, Co3O4 nanocubes homogeneously assembled on few-layer grapheme for high energy density lithium-ion batteries, J. Power Sources 274 (2015) 816-822.

DOI: 10.1016/j.jpowsour.2014.10.106

Google Scholar

[10] Y. Han, M.L. Zhao, L. Dong, J.M. Feng, Y.J. Wang, D.J. Li, X.F. Li, MOF-derived porous hollow Co3O4 parallelepipeds for building high-performance Li-ion batteries, J. Mater. Chem. A 3 (2015) 22542-22546.

DOI: 10.1039/c5ta06205e

Google Scholar

[11] L. Li, Z.C. Zhang, S.J. Ren, B.K. Zhang, S.H. Yang, B.Q. Cao, Construction of hollow Co3O4 cubes as a high performance anode for lithium ion batteries, New J. Chem. 41 (2017) 7960-7965.

DOI: 10.1039/c7nj01432e

Google Scholar

[12] Y.Z. Wu, J.S. Meng, Q. Li, C.J. Niu, X.P. Wang, W. Yang, W. Li, L.Q. Mai, Interface-modulated fabrication of hierarchical yolk-shell Co3O4/C dodecahedrons as stable anodes for lithium and sodium storage, Nano Res. 10 (2017) 2364-2376.

DOI: 10.1007/s12274-017-1433-6

Google Scholar

[13] B. Wang, X.Y. Lu, Y.Y. Tang, Synthesis of snowflake-shaped Co3O4 with a high aspect ratio as a high capacity anode material for lithium ion batteries, J. Mater. Chem. A 3 (2015) 9689-9699.

DOI: 10.1039/c5ta00140d

Google Scholar

[14] H. Ge, T.T. Hao, H. Osgood, B. Zhang, L. Chen, L.X. Cui, X.M. Song, O. Ogoke, G. Wu, Advanced Mesoporous Spinel Li4Ti5O12-rGO Composites with Increased Surface Lithium Storage Capability for High-Power Lithium-Ion Batteries, ACS Appl. Mater. Interfaces 8 (2016).

DOI: 10.1021/acsami.6b01644

Google Scholar

[15] S.J. Sun, X.Y. Zhao, M. Yang, L.L. Wu, Z.Y. Wen, X.D. Shen, Hierarchically ordered mesoporous Co3O4 materials for high performance Li-ion batteries, Sci. Rep. 6 (2016) 19564.

DOI: 10.1038/srep19564

Google Scholar

[16] Z.J. Sun, S.J. Wang, L.L. Yan, M. Xiao, D.M. Han, Y.Z. Meng, Mesoporous carbon materials prepared from litchi shell as sulfur encapsulator for lithium-sulfur battery application, J. Power Sources 324 (2016) 547-555.

DOI: 10.1016/j.jpowsour.2016.05.122

Google Scholar