[1]
Orr, B., Akbarzadeh, A., Mochizuki, M. & Singh, R. A review of car waste heat recovery systems utilising thermoelectric generators and heat pipes. Applied Thermal Engineering 101, 490-495.
DOI: 10.1016/j.applthermaleng.2015.10.081
Google Scholar
[2]
Liu, W.; Jie, Q.; Kim, H. S.; Ren, Z., Current progress and future challenges in thermoelectric power generation: From materials to devices. Acta Materialia 2015, 87, 357-376.
DOI: 10.1016/j.actamat.2014.12.042
Google Scholar
[3]
He, W.; Zhang, G.; Zhang, X. X.; Ji, J.; Li, G. Q.; Zhao, X. D., Recent development and application of thermoelectric generator and cooler. Appl Energ 2015, 143, 1-25.
DOI: 10.1016/j.apenergy.2014.12.075
Google Scholar
[4]
Siddique, A. R. M., Mahmud, S. & Van Heyst, B. A review of the state of the science on wearable thermoelectric power generators (TEGs) and their existing challenges. Renew Sust Energ Rev 73, 730-744.
DOI: 10.1016/j.rser.2017.01.177
Google Scholar
[5]
Snyder, G.J., et al., Thermoelectric micro-device fabricated by a MEMS-like electrochemical process. Nature Materials, 2003. 2(8): pp.528-531.
Google Scholar
[6]
Liu, D.W. and J.F. Li, Microfabrication of thermoelectric modules by patterned electrodeposition using a multi-channel glass template. Journal of Solid State Electrochemistry, 2011. 15(3): pp.479-484.
DOI: 10.1007/s10008-010-1104-y
Google Scholar
[7]
Liu, D.W., et al., Fabrication and evaluation of microscale thermoelectric modules of Bi2Te3-based alloys. Journal of Micromechanics and Micro-engineering, 2010. 20(12).
Google Scholar
[8]
D. W. Liu and J. F. Li, Fabrication and Performance Simulation of Microscale Thermoelectric Modules Made with Bi2Te3-Based Alloys, Key Engineering Materials, Vol. 483, pp.75-77, (2011).
DOI: 10.4028/www.scientific.net/kem.483.75
Google Scholar
[9]
Kim, M. Y. & Oh, T. S. Thermoelectric Thin Film Device of Cross-Plane Configuration Processed by Electrodeposition and Flip-Chip Bonding. Mater Trans 53, 2160-2165.
DOI: 10.2320/matertrans.m2012265
Google Scholar
[10]
Bahk, J. H., Fang, H. Y., Yazawa, K. & Shakouri, A. Flexible thermoelectric materials and device optimization for wearable energy harvesting. J Mater Chem C 3, 10362-10374.
DOI: 10.1039/c5tc01644d
Google Scholar
[11]
Francioso, L. et al. Modelling, fabrication and experimental testing of an heat sink free wearable thermoelectric generator. Energ Convers Manage 145, 204-213.
DOI: 10.1016/j.enconman.2017.04.096
Google Scholar
[12]
Uda, K.; Seki, Y.; Saito, M.; Sonobe, Y.; Hsieh, Y. C.; Takahashi, H.; Terasaki, I.; Homma, T., Fabrication of Pi-structured Bi-Te thermoelectric micro-device by electrodeposition. Electrochimica Acta 2015, 153, 515-522.
DOI: 10.1016/j.electacta.2014.12.019
Google Scholar
[13]
Aswal, D. K., Basu, R. & Singh, A. Key issues in development of thermoelectric power generators: High figure-of-merit materials and their highly conducting interfaces with metallic interconnects. Energ Convers Manage 114, 50-67.
DOI: 10.1016/j.enconman.2016.01.065
Google Scholar
[14]
P. I. Lerantzis et al., Study of Thermal Behavior of Porcelain Insulators with the Finite Element Method, Key Engineering Materials, Vol. 495, pp.142-147, (2012).
DOI: 10.4028/www.scientific.net/kem.495.142
Google Scholar
[15]
T.-H. Yeh et al., Numerical Modeling and Design of an Inspection Device with Thermoelectric Coolers for the Coke Oven, Key Engineering Materials, Vols. 419-420, pp.29-32, (2010).
DOI: 10.4028/www.scientific.net/kem.419-420.29
Google Scholar
[16]
Ebling, D., et al., Multiphysics Simulation of Thermoelectric Systems for Comparison with Experimental Device Performance. Journal of Electronic Materials, 2009. 38(7): pp.1456-1461.
DOI: 10.1007/s11664-009-0825-0
Google Scholar
[17]
J. S. Tse et al., Computer Modelling of the Structures, Stabilities and Thermoelectric Efficiency of Materials with Clathrate Structures, Key Engineering Materials, Vol. 227, pp.163-170, (2002).
DOI: 10.4028/www.scientific.net/kem.227.163
Google Scholar
[18]
T. Liu and X. P. Liao, Simulation of Characteristic of a Thermoelectric Power Sensor Based on MEMS Technology, Key Engineering Materials, Vol. 503, pp.91-96, (2012).
DOI: 10.4028/www.scientific.net/kem.503.91
Google Scholar
[19]
X. L. Zhu et al., Optimal Design and Simulation of a Cross-Plane Micro-Thermoelectric Generator, Key Engineering Materials, Vol. 503, pp.240-243, (2012).
DOI: 10.4028/www.scientific.net/kem.503.240
Google Scholar
[20]
Chowdhury, I., et al., On-chip cooling by superlattice-based thin-film thermoelectrics. Nature Nanotechnology, 2009. 4(4): pp.235-238.
DOI: 10.1038/nnano.2008.417
Google Scholar