Enhanced Ionic Conductivity in Ce0.8Gd0.2O2-δ Nanofiber: Effect of the Crystallite Size

Article Preview

Abstract:

The relationship between the microstructure and the conductivity of nanocrystallized oxygen ionic electrolytes has been received great interest since it provides guidelines for designing electrolytes with high performances which might find applications in fuel cells and oxygen sensors. Here, we present a strategy for controlling the calcination temperature to tune the crystallite size and ionic transport properties of solid electrolyte. Different crystallite sizes of Ce0.8Gd0.2O2-δ (CGO) nanofiber electrolytes were prepared. As the average crystallite size decreased from 27 nm to 8 nm, the conductivity of the nanofibers increased by more than five times. An exceptionally high oxide ion conductivity of 0.023 S∙cm-1 for the nanofibers was observed at 550°C. These insights into the effect of the crystallite size on the structure and the conductivity allow a better control of the electrical properties of solid electrolytes, which might foster their applications in electrochemical devices operable at lower temperatures.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 281)

Pages:

761-766

Citation:

Online since:

August 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] B. Singh, S. Ghosh, S. Aich, B. Roy, Low temperature solid oxide electrolytes (LT-SOE): A review, J. Power Sources 339 (2017) 103.

DOI: 10.1016/j.jpowsour.2016.11.019

Google Scholar

[2] Z. Gao, L. V. Mogni, E. C. Miller, J. G. Railsback, S. A. Barnett, A perspective on low-temperature solid oxide fuel cells, Energ. Environ. Sci. 9 (2016) 1602.

DOI: 10.1039/c5ee03858h

Google Scholar

[3] E. D. Wachsman, K. T. Lee, Lowering the temperature of solid oxide fuel cells, Science 334 (2011) 935.

DOI: 10.1126/science.1204090

Google Scholar

[4] L. Malavasi, C. A. Fisher, M. S. Islam, Oxide-ion and proton conducting electrolyte materials for clean energy applications: structural and mechanistic features, Chem. Soc. Rev. 39 (2010) 4370.

DOI: 10.1039/b915141a

Google Scholar

[5] A. N. Kovalchuk, A. M. Lebedinskiy, A. A. Solovyev, I. V. Ionov, E. A. Smolyanskiy, A. V. Shipilova, A. L. Lauk, M. R. Rombaeva, Performance Characteristics of Solid Oxide Fuel Cells with YSZ/CGO Electrolyte, Key Eng. Mater. 743 (2017) 281.

DOI: 10.4028/www.scientific.net/kem.743.281

Google Scholar

[6] T. Inoue, T. Setoguchi, K. Eguchi, H. Arai, Study of a solid oxide fuel cell with a ceria-based solid electrolyte, Solid State Ionics 35 (1989) 285.

DOI: 10.1016/0167-2738(89)90310-x

Google Scholar

[7] W. Liu, S. W. Lee, D. Lin, F. Shi, S. Wang, A. D. Sendek, Y. Cui, Enhancing ionic conductivity in composite polymer electrolytes with well-aligned ceramic nanowires, Nat. Energy 2 (2017) 17035.

DOI: 10.1038/nenergy.2017.35

Google Scholar

[8] Y. Chen, Y. Bu, Y. Zhang, R. Yan, D. Ding, B. Zhao, S. Yoo, D. Dang, R. Hu, C. Yang, M. Liu, A Highly Efficient and Robust Nanofiber Cathode for Solid Oxide Fuel Cells, Adv. Energy Mater. 7 (2017) 1601890.

DOI: 10.1002/aenm.201601890

Google Scholar

[9] A. Miyamoto, S. Lee, N. F. Cooray, S. Lee, M. Mori, N. Matsuhisa, H. Jin, L. Yoda, T. Yokota, A. Itoh, M. Sekino, H. Kawasaki, T. Ebihara, M. Amagai, T. Someya, Inflammation-free, gas-permeable, lightweight, stretchable on-skin electronics with nanomeshes, Nat. Nanotechnol. 12 (2017).

DOI: 10.1038/nnano.2017.125

Google Scholar

[10] J. Garcia-Barriocanal, A. Rivera-Calzada, M. Varela, Z. Sefrioui, E. Iborra, C. Leon, S. J. Pennycook, J. Santamaria, Colossal ionic conductivity at interfaces of epitaxial ZrO2: Y2O3/SrTiO3 heterostructures, Science 321 (2008) 676.

DOI: 10.1126/science.1156393

Google Scholar

[11] M. G. Bellino, D. G. Lamas, N. E. Walsöe de Reca, Enhanced Ionic Conductivity in Nanostructured, Heavily Doped Ceria Ceramics, Adv. Funct. Mater. 16 (2006) 107.

DOI: 10.1002/adfm.200500186

Google Scholar

[12] M. Zhi, S. Lee, N. Miller, N. H. Menzler, N. Wu, An intermediate-temperature solid oxide fuel cell with electrospun nanofiber cathode, Energ. Environ. Sci. 5 (2012) 7066.

DOI: 10.1039/c2ee02619h

Google Scholar

[13] W. Liu, W. Pan, J. Luo, A. Godfrey, G. Ou, H. Wu, W. Zhang, Suppressed phase transition and giant ionic conductivity in La2Mo2O9 nanowires, Nat. Commun. 6 (2015) 8354.

DOI: 10.1038/ncomms9354

Google Scholar

[14] A. Rothschild, Y. Komem, The effect of grain size on the sensitivity of nanocrystalline metal-oxide gas sensors, J. Appl. Phys. 95 (2004) 6374.

DOI: 10.1063/1.1728314

Google Scholar

[15] L. Yao, W. Liu, G. Ou, H. Nishijima, W. Pan, Phase stability and high conductivity of ScSZ nanofibers: effect of the crystallite size, J. Mater. Chem. A 3 (2015) 10795.

DOI: 10.1039/c4ta06712f

Google Scholar

[16] J. Maier, Nano-sized mixed conductors (Aspects of nano-ionics. Part III), Solid State Ionics 148 (2002) 367.

DOI: 10.1016/s0167-2738(02)00075-9

Google Scholar

[17] I. Kosacki, T. Suzuki, V. Petrovsky, H. U. Anderson, Electrical conductivity of nanocrystalline ceria and zirconia thin films, Solid State Ionics 136-137 (2000) 1225.

DOI: 10.1016/s0167-2738(00)00591-9

Google Scholar

[18] H. L. Tuller, Ionic conduction in nanocrystalline materials, Solid State Ionics 131 (2000) 143.

DOI: 10.1016/s0167-2738(00)00629-9

Google Scholar