On the Sol-Gel Synthesis and Structure, Electronic and Ionic Conductivities and Impedance Behavior of Y, Fe Co-Doped SrTiO3 Mixed Conductor

Article Preview

Abstract:

A single phase perovskite, YxSr1xTi0.6Fe0.4O3-δ (x= 0.06-0.09), was fabricated at 1350°C in air by sol-gel method. The effects of Y-and Fe-doping into SrTiO3 on phase structure, electrical conductivity, ionic conductivity and its impedance behavior were investigated. The optimized Y0.07Sr0.93Fe0.4Ti0.6O3-δ sample exhibits an electrical conductivity of 0.135 S·cm-1 at 800 °C. Y-doping decreases the migration energy for oxygen ions, leading to a significant increase in ionic conductivity. The ionic conductivity of Y0.09Sr0.91Ti0.6Fe0.4O3-δ sample varies from 0.0052 S· cm-1 at 600°C to 0.02 S·cm-1 at 800°C. Impedance characteristics over a wide frequency range of 0.01Hz-100 KHz reveal that the resistance of ionic conduction is predominantly influenced by grain boundary, the relaxation time of which decreases with increase of Y-doping amount.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 281)

Pages:

774-781

Citation:

Online since:

August 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Y. Matsuzaki, I. Yasuda, The poisoning effect of sulfur-containing impurity gas on a SOFC anode: Part I, Dependence on temperature, time and impurity concentration, Solid State Ionics 132 (2000) 261-269.

DOI: 10.1016/s0167-2738(00)00653-6

Google Scholar

[2] R. Moos, F. Rettig, Temperature-independent resistive oxygen exhaust gas sensor for lean-burn engines in thick-film technology, Sens. Actuators B 93 (2003) 43-50.

DOI: 10.1016/s0925-4005(03)00333-2

Google Scholar

[3] Y. Hu, O. K. Tana, J. S. Pan, The effects of annealing temperature on the sensing properties of low temperature nano-sized SrTiO3 oxygen gas sensor, Sens. Actuators B 108 (2005) 244-249.

DOI: 10.1016/j.snb.2004.10.053

Google Scholar

[4] X. Chen, H. Liu, Y. Wei, J. Caro, H. Wang, A novel zincum-doped perovskite-type ceramic membrane for oxygen separationJ. Alloys Compd. 484 (2009) 386–389.

DOI: 10.1016/j.jallcom.2009.04.107

Google Scholar

[5] F. Zhao, L. Zhang, Z. Jiang, C. Xia, F. Chen, A high performance intermediate-temperature solid oxide fuel cell using impregnated La0.6Sr0.4CoO3−δ cathode, J. Alloys Compd. 487 (2009) 781–785.

DOI: 10.1016/j.jallcom.2009.08.063

Google Scholar

[6] S.P. Lee, Electrical behavior in gas–solid interface of gas sensors based on oxide semiconductors, Int. J. Appl. Ceram. Technol. 3 (2006) 225–229.

DOI: 10.1111/j.1744-7402.2006.02074.x

Google Scholar

[7] P. Zeng, R. Ran, Z. Chen, W. Zhou, H. Gu, Z. Shao, S. Liu, Efficient stabilization of cubic perovskite SrCoO3−δ by B-site low concentration scandium doping combined with sol–gel synthesis, J. Alloys Compd. 455 (2008) 465–470.

DOI: 10.1016/j.jallcom.2007.01.144

Google Scholar

[8] S. Pinitsoontorn, N. Lerssongkram, A. Harnwunggmoung, K. Kurosaki, S.Yamanaka, Synthesis, mechanical and magnetic properties of transition metals-doped Ca3Co3.8M0.2O9, J. Alloys Compd. 503 (2010) 431–435.

DOI: 10.1016/j.jallcom.2010.05.027

Google Scholar

[9] J. W. Fergus, Perovskite oxides for semiconductor-based gas sensors, Sens. Actuators B 123 (2007) 1169–1179.

DOI: 10.1016/j.snb.2006.10.051

Google Scholar

[10] O. Kurt, D. Ascienzo, S. Greenbaum, T.J.M. Bayer, Y.H. Ren, Nonlinear optical detections of structural distortions at degraded Fe-doped SrTiO3 interfaces, Mater. Phys. Chem. 198 (2017) 131-136.

DOI: 10.1016/j.matchemphys.2017.05.047

Google Scholar

[11] B. Thomas, M. Joaehim, W. Rainer, Kinetics of oxygen incorporation in SrTiO3 (Fe-doped): an optical investigation, Sens. Actuators B 7 (1992) 763-868.

Google Scholar

[12] X. H. Zhou, Q. X. Cao, Y. L. Xu, Electrical conduction and oxygen sensing mechanism of Mg-doped SrTiO3 thick film sensors, Sens. Actuators B 65 (2000) 52-54.

DOI: 10.1016/s0925-4005(99)00397-4

Google Scholar

[13] X. Li, H. L. Zhao, N. S. Xu, Electrical conduction behavior of La, Co co-doped SrTiO3 perovskite as anode material for solid oxide fuel cells, Int. J. Hydrogen Energy, 15 (2009) 6407-6414.

DOI: 10.1016/j.ijhydene.2009.05.079

Google Scholar

[14] X. Li, H. L. Zhao, F. Gao, La and Sc co-doped SrTiO3 as novel anode materials for solid oxide fuel cells, Electrochem. Commun. 10 (2008) 1567-1570.

DOI: 10.1016/j.elecom.2008.08.017

Google Scholar

[15] D. Liu, Y. Zhang, H. Kang, J. Li, T. Wang, Direct preparation of La-doped SrTiO3 thermoelectric materials by mechanical alloying with carbon burial sintering, J. Eur. Ceram. Soc. 38 (2018) 807-811.

DOI: 10.1016/j.jeurceramsoc.2017.09.022

Google Scholar

[16] J. S. Yoon, M. Y. Yoon, C. Kwak, Y0.08Sr0.92FexTi1−xO3−δ perovskite for solid oxide fuel cell anodes, Mater. Sci. Eng B 177 (2011) 151-156.

DOI: 10.1016/j.mseb.2011.10.016

Google Scholar

[17] H. Obara, A. Yamamoto, C.-H Lee, K. Kobayashi , Thermoelectric properties of Y-doped polycrystalline SrTiO3, Jap. J. Appl. Phys. 43 (2004) 540-542.

Google Scholar

[18] R. D. Shannon, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta. Crystallogr. A 32 (1976) 751-767.

DOI: 10.1107/s0567739476001551

Google Scholar

[19] J. Han, Q. Sun, Y.Song, Enhanced thermoelectric properties of La and Dy co-doped, Sr-deficient SrTiO3 ceramics. J. Alloys Compd. 705 (2017) 22-27.

DOI: 10.1016/j.jallcom.2017.02.146

Google Scholar

[20] H. Y. Tu, Y. Takeda, N. Imanish, O. Yamamoto, Ln1-xSrxCoO3 (Ln = Sm, Dy) for the electrode of solid oxide fuel cells, Solid State Ionics 100 (1997) 283-288.

DOI: 10.1016/s0167-2738(97)00360-3

Google Scholar

[21] K. J. Shivendra, K. Jitendra, On the sol-gel synthesis and structure, optical, magnetic and impedance behaviour of strontium cobaltite powder, J. Alloys Compd. 509 (2011) 3859-3865.

DOI: 10.1016/j.jallcom.2010.12.125

Google Scholar

[22] C. C. A. Joao, A. L. Joao, R. F. Jorge, Behavior of strontium titanate ceramics in reducing conditions suggesting enhanced conductivity along grain contacts, J. Eur. Ceram. Soc. 22 (2002) 1683-1691.

DOI: 10.1016/s0955-2219(01)00466-6

Google Scholar

[23] L.J. Liu, Y.M. Huang, C.X Su, L. Fang, M.X. Wu, C. Z. Hu, H.Q. Fan, Space-charge relaxation and electrical conduction in K0.5Na0.5NbO3 at high temperatures, Appl. Phys A 104 (2011) 1047-1051.

DOI: 10.1007/s00339-011-6358-4

Google Scholar

[24] A. Molak, E. Ksepko, I. Gruszka, A. Ratuszna, M. Paluch, Z.Ujma, Electric permittivity and conductivity of (Na0.5Pb0.5)(Mn0.5Nb0.5)O3 ceramics, Solid State Ionics 176 (2005) 1439–1447.

DOI: 10.1016/j.ssi.2005.03.013

Google Scholar

[25] K. Shan, X.M. Guo, Synthesis and Electrical properties of Fe-doped Y0.08Sr0.92TiO3 mixed ionic-electronic conductor, Mater. Lett. 105 (2013) 196-198.

DOI: 10.1016/j.matlet.2013.03.140

Google Scholar

[26] K. Shan, X.M. Guo, Electrical conduction behavior of A-site deficient (Y, Fe) co-doped SrTiO3 mixed ionic-electronic conductor, Mater. Lett. 113 (2013) 126-129.

DOI: 10.1016/j.matlet.2013.09.042

Google Scholar