[1]
Y. Matsuzaki, I. Yasuda, The poisoning effect of sulfur-containing impurity gas on a SOFC anode: Part I, Dependence on temperature, time and impurity concentration, Solid State Ionics 132 (2000) 261-269.
DOI: 10.1016/s0167-2738(00)00653-6
Google Scholar
[2]
R. Moos, F. Rettig, Temperature-independent resistive oxygen exhaust gas sensor for lean-burn engines in thick-film technology, Sens. Actuators B 93 (2003) 43-50.
DOI: 10.1016/s0925-4005(03)00333-2
Google Scholar
[3]
Y. Hu, O. K. Tana, J. S. Pan, The effects of annealing temperature on the sensing properties of low temperature nano-sized SrTiO3 oxygen gas sensor, Sens. Actuators B 108 (2005) 244-249.
DOI: 10.1016/j.snb.2004.10.053
Google Scholar
[4]
X. Chen, H. Liu, Y. Wei, J. Caro, H. Wang, A novel zincum-doped perovskite-type ceramic membrane for oxygen separationJ. Alloys Compd. 484 (2009) 386–389.
DOI: 10.1016/j.jallcom.2009.04.107
Google Scholar
[5]
F. Zhao, L. Zhang, Z. Jiang, C. Xia, F. Chen, A high performance intermediate-temperature solid oxide fuel cell using impregnated La0.6Sr0.4CoO3−δ cathode, J. Alloys Compd. 487 (2009) 781–785.
DOI: 10.1016/j.jallcom.2009.08.063
Google Scholar
[6]
S.P. Lee, Electrical behavior in gas–solid interface of gas sensors based on oxide semiconductors, Int. J. Appl. Ceram. Technol. 3 (2006) 225–229.
DOI: 10.1111/j.1744-7402.2006.02074.x
Google Scholar
[7]
P. Zeng, R. Ran, Z. Chen, W. Zhou, H. Gu, Z. Shao, S. Liu, Efficient stabilization of cubic perovskite SrCoO3−δ by B-site low concentration scandium doping combined with sol–gel synthesis, J. Alloys Compd. 455 (2008) 465–470.
DOI: 10.1016/j.jallcom.2007.01.144
Google Scholar
[8]
S. Pinitsoontorn, N. Lerssongkram, A. Harnwunggmoung, K. Kurosaki, S.Yamanaka, Synthesis, mechanical and magnetic properties of transition metals-doped Ca3Co3.8M0.2O9, J. Alloys Compd. 503 (2010) 431–435.
DOI: 10.1016/j.jallcom.2010.05.027
Google Scholar
[9]
J. W. Fergus, Perovskite oxides for semiconductor-based gas sensors, Sens. Actuators B 123 (2007) 1169–1179.
DOI: 10.1016/j.snb.2006.10.051
Google Scholar
[10]
O. Kurt, D. Ascienzo, S. Greenbaum, T.J.M. Bayer, Y.H. Ren, Nonlinear optical detections of structural distortions at degraded Fe-doped SrTiO3 interfaces, Mater. Phys. Chem. 198 (2017) 131-136.
DOI: 10.1016/j.matchemphys.2017.05.047
Google Scholar
[11]
B. Thomas, M. Joaehim, W. Rainer, Kinetics of oxygen incorporation in SrTiO3 (Fe-doped): an optical investigation, Sens. Actuators B 7 (1992) 763-868.
Google Scholar
[12]
X. H. Zhou, Q. X. Cao, Y. L. Xu, Electrical conduction and oxygen sensing mechanism of Mg-doped SrTiO3 thick film sensors, Sens. Actuators B 65 (2000) 52-54.
DOI: 10.1016/s0925-4005(99)00397-4
Google Scholar
[13]
X. Li, H. L. Zhao, N. S. Xu, Electrical conduction behavior of La, Co co-doped SrTiO3 perovskite as anode material for solid oxide fuel cells, Int. J. Hydrogen Energy, 15 (2009) 6407-6414.
DOI: 10.1016/j.ijhydene.2009.05.079
Google Scholar
[14]
X. Li, H. L. Zhao, F. Gao, La and Sc co-doped SrTiO3 as novel anode materials for solid oxide fuel cells, Electrochem. Commun. 10 (2008) 1567-1570.
DOI: 10.1016/j.elecom.2008.08.017
Google Scholar
[15]
D. Liu, Y. Zhang, H. Kang, J. Li, T. Wang, Direct preparation of La-doped SrTiO3 thermoelectric materials by mechanical alloying with carbon burial sintering, J. Eur. Ceram. Soc. 38 (2018) 807-811.
DOI: 10.1016/j.jeurceramsoc.2017.09.022
Google Scholar
[16]
J. S. Yoon, M. Y. Yoon, C. Kwak, Y0.08Sr0.92FexTi1−xO3−δ perovskite for solid oxide fuel cell anodes, Mater. Sci. Eng B 177 (2011) 151-156.
DOI: 10.1016/j.mseb.2011.10.016
Google Scholar
[17]
H. Obara, A. Yamamoto, C.-H Lee, K. Kobayashi , Thermoelectric properties of Y-doped polycrystalline SrTiO3, Jap. J. Appl. Phys. 43 (2004) 540-542.
Google Scholar
[18]
R. D. Shannon, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta. Crystallogr. A 32 (1976) 751-767.
DOI: 10.1107/s0567739476001551
Google Scholar
[19]
J. Han, Q. Sun, Y.Song, Enhanced thermoelectric properties of La and Dy co-doped, Sr-deficient SrTiO3 ceramics. J. Alloys Compd. 705 (2017) 22-27.
DOI: 10.1016/j.jallcom.2017.02.146
Google Scholar
[20]
H. Y. Tu, Y. Takeda, N. Imanish, O. Yamamoto, Ln1-xSrxCoO3 (Ln = Sm, Dy) for the electrode of solid oxide fuel cells, Solid State Ionics 100 (1997) 283-288.
DOI: 10.1016/s0167-2738(97)00360-3
Google Scholar
[21]
K. J. Shivendra, K. Jitendra, On the sol-gel synthesis and structure, optical, magnetic and impedance behaviour of strontium cobaltite powder, J. Alloys Compd. 509 (2011) 3859-3865.
DOI: 10.1016/j.jallcom.2010.12.125
Google Scholar
[22]
C. C. A. Joao, A. L. Joao, R. F. Jorge, Behavior of strontium titanate ceramics in reducing conditions suggesting enhanced conductivity along grain contacts, J. Eur. Ceram. Soc. 22 (2002) 1683-1691.
DOI: 10.1016/s0955-2219(01)00466-6
Google Scholar
[23]
L.J. Liu, Y.M. Huang, C.X Su, L. Fang, M.X. Wu, C. Z. Hu, H.Q. Fan, Space-charge relaxation and electrical conduction in K0.5Na0.5NbO3 at high temperatures, Appl. Phys A 104 (2011) 1047-1051.
DOI: 10.1007/s00339-011-6358-4
Google Scholar
[24]
A. Molak, E. Ksepko, I. Gruszka, A. Ratuszna, M. Paluch, Z.Ujma, Electric permittivity and conductivity of (Na0.5Pb0.5)(Mn0.5Nb0.5)O3 ceramics, Solid State Ionics 176 (2005) 1439–1447.
DOI: 10.1016/j.ssi.2005.03.013
Google Scholar
[25]
K. Shan, X.M. Guo, Synthesis and Electrical properties of Fe-doped Y0.08Sr0.92TiO3 mixed ionic-electronic conductor, Mater. Lett. 105 (2013) 196-198.
DOI: 10.1016/j.matlet.2013.03.140
Google Scholar
[26]
K. Shan, X.M. Guo, Electrical conduction behavior of A-site deficient (Y, Fe) co-doped SrTiO3 mixed ionic-electronic conductor, Mater. Lett. 113 (2013) 126-129.
DOI: 10.1016/j.matlet.2013.09.042
Google Scholar