[1]
T. Robson. Sc, Ph.D., F.R.I.C., M. Inst. F. High-Alumina Cements, Architectural Science Review. 2 (1956) 49-56.
Google Scholar
[2]
S.M. Rojak, G.S. Rojak, Special cements, Moscow, Stroyjizdat, (1983).
Google Scholar
[3]
K. Fujii, W. Kondo, H. Ueno, Kinetics of hydration of monocalcium aluminate. Journal of the American Ceramic Society. 69 (1986) 74-82.
Google Scholar
[4]
K. Scrivener, J. Cabiron, R. Letourneux, High-perfomance concretes from calcium aluminate cements, Cement and Concrete Research. 29 (1999) 1215-1223.
DOI: 10.1016/s0008-8846(99)00103-9
Google Scholar
[5]
W. Khaliq, H. Khan, High temperature material properties of calcium aluminate cement concrete, Construction and Building Materials. 94 (2015) 475-487.
DOI: 10.1016/j.conbuildmat.2015.07.023
Google Scholar
[6]
T.V. Kuznetsova, Aluminate and sulfoaluminate cements, Moscow, Stroyizdat, (1986).
Google Scholar
[7]
V. Antonovic, J. Keriene, R. Boris, M. Aleknevicius, The effect of temperature on the formation of the hydrated calcium aluminate cement structure, Procedia engineering. 57 (2013) 99-106.
DOI: 10.1016/j.proeng.2013.04.015
Google Scholar
[8]
N. Ukrainczyk, T. Matusinovic, Thermal properties of hydrating calcium aluminate cement pastes, Cement and Concrete Research. 40 (2010) 128-136.
DOI: 10.1016/j.cemconres.2009.09.005
Google Scholar
[9]
H. Taylor, The Chemistry of Cement, Moscow, Mir, (1996).
Google Scholar
[10]
B. Lothenbach, L. Pelletier-Chaignat, F. Winnefeld, Stabilty in the system CaO-Al2O3-H2O, Cement and concrete research. 42 (2012) 1621-1634.
DOI: 10.1016/j.cemconres.2012.09.002
Google Scholar
[11]
A. Guesta, et al., Aluminum hydroxide gel characterization within a calcium aluminate cement paste by combined Pair Distribution Function and Rietveld analyses, Cement and Concrete Research. 96 (2017) 1-12.
DOI: 10.1016/j.cemconres.2017.02.025
Google Scholar
[12]
A.V. Satalkin, Change in the structure and properties of cement stone and concrete when hardening them under load, Trudy soveshhanija po himii cementa, Moscow, Gosstroiizdat, 1956, p.154–172.
Google Scholar
[13]
A.P. Vasiliev, G.V. Murashkin, Columns made of concrete hardening under pressure, Beton i zhelezobeton. 11 (1983) 11-12.
Google Scholar
[14]
A.V. Kosolapov, Formation of the structure of cement stone in concrete during short-term reduction, Izvestiya vuzov. Stroitel'stvo i arkhitektura. 3 (1976) 98-103.
Google Scholar
[15]
I.I. Shukenov, B.M. Chalabayev, A.Ye. Yerkinbekov, Stand for the stepwise release of prestressing in the process of heat treatment in the manufacture of reinforced concrete structures, Tekhnologii betonov. 2 (2009) 39-41.
Google Scholar
[16]
A. Baiburin, Technology of the early age concrete loading, Procedia Engineering. 150 (2016) 2157-2162.
DOI: 10.1016/j.proeng.2016.07.257
Google Scholar
[17]
Yu.A. Mamontov, M.I. Mamyrkulov, Perfection of the technology of prestressed reinforced concrete, Tehnologii betonov. 7 (2008) 56-57.
Google Scholar
[18]
S. Koval', M. Molodcov, Early loading of concrete in conditions of different humidity, Vestnik JuUrGU. 16 (2011) 15-17.
Google Scholar
[19]
P. Claisse, C. Dean, Compressive strength of concrete after early loading, Construction materials. 166 (2013) 152-157.
DOI: 10.1680/coma.11.00057
Google Scholar
[20]
G. Liu, H. Gao, F. Chen, Microstudy on creep of concrete at early age under biaxial compression, Cement and Concrete Research. 32 (2002) 1865-1870.
DOI: 10.1016/s0008-8846(02)00784-6
Google Scholar
[21]
J. Justs, D. Bajare, A. Korjakins, G. Mezinskis, J. Locs, G. Bumanis, Microstructural investigations of UHPC obtained by pressure application within the first 24 hours of hardening, Construction Science. 8 (2013) 50-57.
DOI: 10.2478/cons-2013-0008
Google Scholar
[22]
M. Nehdi, A.M. Soliman, Early-age properties of concrete: overview of fundamental concepts and state-of-the-art research, Construction materials, procc. of the Inst. of civ. eng. 164 (2011) 1-21.
DOI: 10.1680/coma.900040
Google Scholar
[23]
B.B. Hope, A model for the creep of concrete, Cement and concrete research. 5 (1975) 577-586.
Google Scholar
[24]
I.M. Grushko, A.G. Il'in, Z.D. Chihladze, Increase of strength and endurance of concrete, Har'kov, Vishha shkola, (1986).
Google Scholar
[25]
B.T. Tatsmia, J.J. Beaudoin, J. Marchand, The early-age short-term creep of hardening cement paste: load-induced hydration effects, Cement and concrete composites. 26 (2004) 481-489.
DOI: 10.1016/s0958-9465(03)00079-9
Google Scholar
[26]
W. Jiang, G.D. Schutter, Y. Yan, Degree of hydration based prediction of early age basic creep recovery of blended concrete, Cement and concrete composites. 48 (2009) 83-90.
DOI: 10.1016/j.cemconcomp.2013.10.012
Google Scholar
[27]
F.J. Ulm, O. Coussy Strenght growth as chemo – plastic hardening in early age concrete, ASCE journal of engineering mechanics. 122 (1996) 1123-1132.
DOI: 10.1061/(asce)0733-9399(1996)122:12(1123)
Google Scholar
[28]
Yu.Yu. Galkin, S.A. Udodov, Evaluation of the effectiveness of the method of early loading of hardening cement systems, Bjulleten' stroitel'noj tehniki. 9 (2017) 36-37.
Google Scholar
[29]
Yu.Yu. Galkin, S.A. Udodov, L.V. Vasil'eva, The phase composition and properties of aluminate cements after early loading, Magazine of Civil Engineering. 7 (2017) 114-122.
Google Scholar
[30]
C. Li, B. Cai, W. Feng, Y. Liu, H. Ma, Investigations on phase constitution, mechanical properties and hydration kinetics of aluminous cements containing magnesium aluminate spinel, Ceramics international. 39 (2013) 8394-8400.
DOI: 10.1016/j.ceramint.2013.04.020
Google Scholar